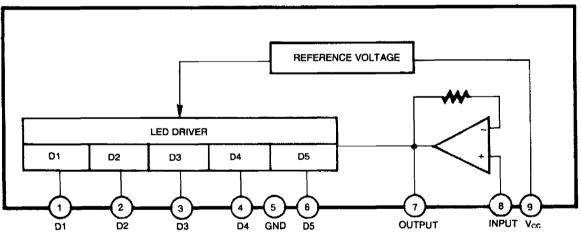

5-DOT DUAL LED LEVEL METER DRIVER

The KA2284/KA2285 are a monolithic integrated circuits designed for 5-dot LED level meter drivers with a built-in rectifying amplifier; it is suitable for AC/DC level meters such as VU meters or signal meters.

FEATURES


- High gain rectifying amplifier included (G_v = 26dB).
- Low radiation noise when LED turns on.
- Logarithmic indicator for 5-dot LED of bar type. (-10, -5, 0, 3, 6dB)
- Constant current output. KA2284: I_o =15mA Typ. KA2285: I_o =7mA Typ.
- Wide operating supply voltage range: $V_{cc} = 3.5V 16V$
- Minimum number of external parts required.

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature	lo
KA2284	9 SIP	-20°C∼+80°C	15 mA
KA2285			7 mA

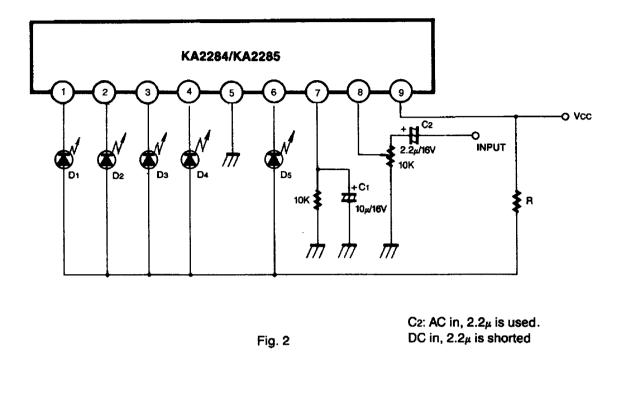
*Capacitor to be omitted when used as a DC input signal meter

Fig. 1

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	Vcc	18	v
Amp Input Voltage	V _{1 (8-5)}	$-0.5 - V_{\rm CC}$	V
Pin 7 Voltage	V _{7.5}	6	V
D Terminal Output Voltage	V _D	18	V
Circuit Current	Icc	12	mA
D Terminal Output Current	lo	20	mA
Power Dissipation	PD	1100	mW
Operating Temperature	T _{OPR}	$-20 \sim +80$	°C
Storage Temperature	T _{STG}	-40 - +125	°C

-11mW/°C is decreased at higher temperature than T_a = 25°C.


ELECTRICAL CHARACTERISTICS

(T_a=25°C, V_{CC} =6V, f=1KHz, unless otherwise specified)

Characteristic		Symbol	Test Conditions	Min	Тур	Max	Unit	
Circuit Current			lcca	V _i =0V		6	8.5	mA
D Output Current	KA22	84	$V_i = 0.15V$	V. Orfey	11	15	18.5	-
	KA22	85		5	7	9.5	mA	
Input Bias Current			IBIAS		-1		0	μΑ
Amp Gain			Gv	V _i =0.1V	24	26	28	dB
Comparator ON Level V _{CL (O}			V _{CL(ON)1}		- 12	- 10	-8	
			V _{CL(ON)2}		- 6	-5	-4	1
			V _{CL(ON)3}	-		0		dB
			V _{CL(ON)4}		2.5	3	3.5]
			V _{CL(ON)5}		5	6	7	

* Definition of 0dB: input voltage level when $V_{CL (ON) 3}$ turn ON. (50mV)

TEST CIRCUIT

The recommended value of R at T_a (max)=60°C.

V _{cc} (V)	8~12	10 ~ 14	12 - 16
R (Ω)	47	68	91

By changing the time constant C_1 and C_2 , the response, attack and release time, may be varied. In the above application conditions, power dissipation may be operated at higher levels than the absolute maximum ratings. The wattage of R is to be determined by the total LED current and R value recommended by the R table.