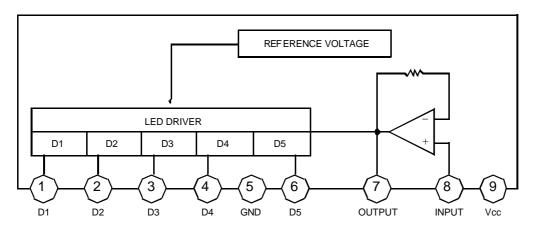

INTRODUCTION

The KA2284B/KA2285B are a monolithic integrated circuits designed for 5-dot LED level meter drivers with a built-in rectifying amplifier; it is suitable for AC/DC level meters such as VU meters or signal meters.

FEATURES


- High gain rectifying amplifier included ($G_V = 26dB$).
- Low radiation noise when LED turns on.
- Logarithmic indicator for 5-dot LED of bar type. (-10, -5, 0, 3, 6dB)
- Constant current output. KA2284B:l₀ = 15mA Typ. KA2285B:l₀ = 7mA Typ.
- Wide operating supply voltage range: $V_{CC} = 3.5 \text{V} \sim 1.6 \text{V}$
- Minimum number of external parts required.

BLOCK DIAGRAM

ORDERING IN FORMATION

Device	Package	Operating Temperature	I _D
KA2284B		0000 . 00 00	15mA
KA2285B	9-SIP	-20°C ~ + 80; °C	7mA

¹⁰capacuor to he smined when used as a oc input stgnai meter

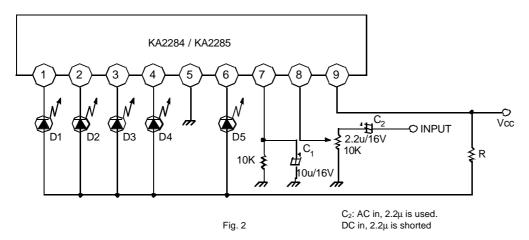
Fig. 1

ABSOLUTE MAXIMUM RATINGS (Ta = 25)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{CC}	18	V
Amp Input Voltage	V _{I (8-5)}	-0.5 ~ V _{CC}	V
Pin 7 Voltage	V ₇₋₅	6	V
D Terminal Output Voltage	V_D	18	V
Circuit Current	I _{cc}	12	mA
D Terminal Output Current	I _D	20	mA
Power Dissipation	P_{D}	1100	mW
Operating Temperature	T_OPR	-20 ~ + 80	°C
Storage Temperature	T_{STG}	-40 ~ + 50	°C

⁻¹¹mW/ $_{i}$ É is decreased at higher temperature than $T_a = 25$ °C

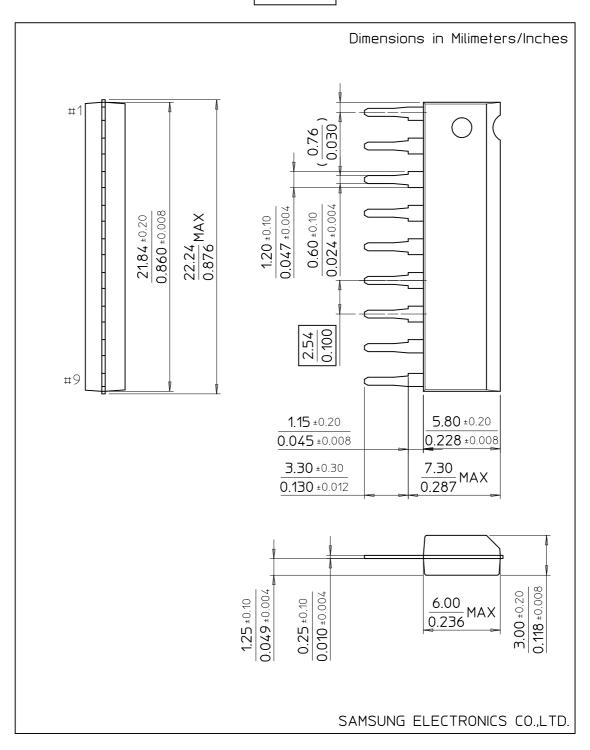
ELECTRICAL CHARACTERISTICS


 $(T_a = 25^{\circ}C, V_{CC} = 6V, f = 1KHz, unless otherwise specified)$

Charact	eristic		Symbol	Test Conditions	Min	Тур	Max	Unit
Circuit Current			Iccq	VI = 0V		6	8.5	mA
D 0 1 10 1	KA228	4B		I _O VI = 0.15V	11	15	18.5	mA
D Output Current	KA228	5B	lo		5	7	9.5	
Input Bias Current			I _{BIAS}		-1		0	μΑ
Amp Gain			G _V	VI = 0.1V	24	26	28	dB
Comparator ON Level V _{CL (C}			V _{CL(ON)1}		-12	-10	-8	
			V _{CL(ON)2}		-6	-5	-4	
		V _{CL (ON)}				0		dB
			V _{CL(ON)4}		2.5	3	3.5	
			$V_{CL(ON)5}$		5	6	7	

 $^{^{\}text{1}^{\text{1}}}\text{Definition}$ of 0dB: input voltage level when $V_{\text{CL (ON)3}}$ turn ON. (50mV)

TEST CIRCUIT


The recommended value of R at T_a (max) = 60° C

V _{CC} (V)	8 ~ 12	10 ~ 14	12 ~ 16
R(Ω)	47	68	91

By changing the time constant C_1 and C_2 , the response, attack and release time, may be varied. In the above application conditions, power dissipation may be operated at higher levels than the absolute maximum ratings. The wattage of R is to be determined by the total LED current and R value recommended by the R table.

9-SIP

