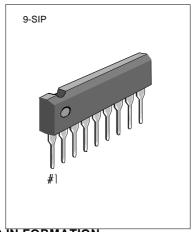
KA2287B


5 DOT LED LINEAR LEVEL METER

INTRODUCTION

The KA2287B are a monolithic integrated circuit designed for 5-dot LED level meter drivers with a built-in rectifving amplifier, it is suitable for AC/DC level meters such as VU meters or signal meters.

FEATURES

- High gain rectifying amplitier included ($G_V = 26dB$).
- Low radiation noise when LED turns on.
- Linear indicator tor 5-dot LED of bar type. (0.33, 0.67, 1, 1.33, 1.67)
- Constant current output.
- KA2287B: $l_0 = 15 \text{mA Typ.}$
- Wide operating supply voltage range: $V_{CC} = 3.5V \sim 16V$
- Minimum number of external parts required.

ORDERING IN FORMATION

Device	Package	Operating Temperature	ID	
K 4 000 7 D	dio	-20°C ~ +80 [©] C~O	7 mA	
KA2287B	9-SIP	-20°C ~ +80°C °	15mA	

BLOCK DIAGRAM

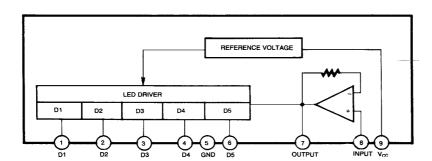


Fig. 1

5 DOT LED LINEAR LEVEL METER

ABSOLUTE MAXIMUM RATINGS (Ta =25)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{CC}	18	V
Amp Input Voltage	V _{I (8-5)}	-0.5 ~ V _{CC}	V
Pin 7 Voltage	V ₇₋₅	6	V
D Terminal Output Voltage	V _D	18	V
Circuit Current	Icc	12	mA
D Terminal Output Current	I _D	20	mA
Power Dissipation	P_{D}	1100	mW
Operating Temperature	T _{OPR}	-20 ~ +80	°C
Storage Temperature	T _{STG}	-40 ~ +125	°C

⁻¹¹mW/°C = C is decreased at higher temperature than T_a = $25^{\circ}C$

 $\begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \\ \text{(Ta =25$_{$^{\circ}$E}$, $V_{CC}=6$V$, $f=1$KHz, unless otherwise specified)} \end{array}$

Characteristic		Symbol	Test Conditions	Min	Тур	Max	Unit
Quiescent Circuit Current		Iccq	$V_1 = 0V$		6	8.5	mA
D Output Current		lo	$V_1 = 0.15V$	11	15	18.5	mA
Input Bias Current		I _{BIAS}		-1		0	μΑ
Amp Gain		G∨	$V_1 = 0.1V$	24	26	28	dB
	V _{CL (ON)}	V _{CL(ON)1}		0.28	0.33	0.40	
		V _{CL(ON)2}		0.59	0.67	0.75	
Comparator On Level		V _{CL(ON)3}			1		V_3
		V _{CL(ON)4}		1.25	1.33	1.42	
		V _{CL(ON)5}		1.48	1.67	1.87	

 $^{^{\}text{\tiny 1}^{\text{\tiny 1}}}\text{Definition}$ of 1 ; Pin 3 voltage when $V_{\text{CL (ON)3}}$ turn on. (65mV)

TEST CIRCUIT

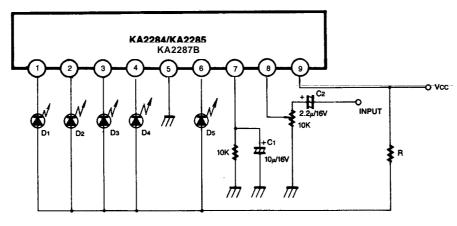
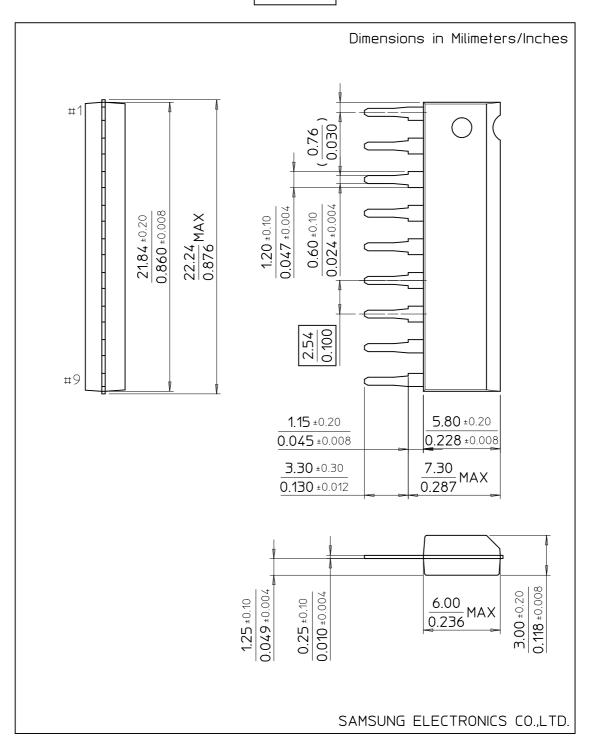


Fig. 2


 $C_2{:}$ AC in, 2.2μ is used. DC in, 2.2μ is shorted

The recommended value of R at T_a (max) = 60° C

V _{CC} (V)	8 ~ 12	10 ~ 14	12 ~ 16
$R(\Omega)$	47	68	91

By changing the time constant C_1 and, C_2 the response, attack and release time, may be varied. In the above application conditions, power dissipation may be operated at higher levels than the absolute maximum ratings. The wattage of R is to be determined by the total LED current and R value recommended by the R table.

9-SIP

