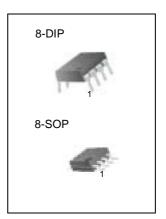


KA311

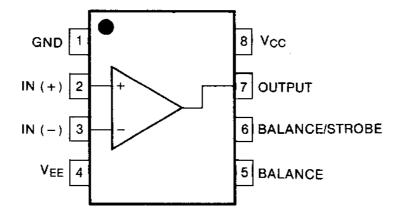
Single Comparator

Features

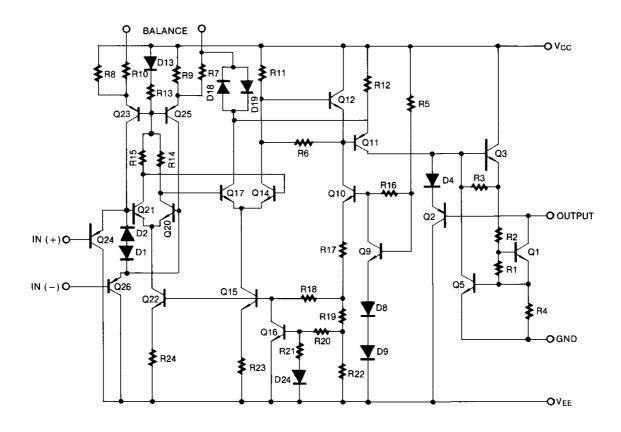
Low input bias current: 250nA (Max)
Low input offset current: 50nA (Max)
Differential Input Voltage: ±30V


• Power supply voltage: single 5.0V supply to ± 15 V.

• Offset voltage null capability.


· Strobe capability.

Description


The KA311 series is a monolithic, low input current voltage comparator. The device is also designed to operate from dual or single supply voltage.

Internal Block Diagram

Schematic Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Total Supply Voltage	Vcc	36	V
Output to Negative Supply Voltage KA311	Vo - VEE	40	V
Ground to Negative voltage	VEE	-30	V
Differential Input Voltage	VI(DIFF)	30	V
Input Voltage	VI	±15	V
Output Short Circuit Duration	-	10	sec
Power Dissipation	PD	500	mW
Operating Temperature Range	TOPR	0 ~ +70	°C
Storage Temperature Range	TSTG	- 65 ~ + 150	°C

Electrical Characteristics

 $(V_{CC} = 15V, T_A = 25^{\circ}C, unless otherwise specified)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Offset Voltage	VIO	Rs≤50KΩ	-	1.0	7.5	mV
		NOTE 1	-	-	10	
Input Offset Current	lio		-	6	50	nA
		NOTE 1	-	-	70	IIA
Input Bias Current	IBIAS		-	100	250	nA
		NOTE 1	-	-	300	
Voltage Gain	G∨	-	40	200	-	V/mV
Response Time	tres	NOTE 2	-	200	-	ns
Saturation Voltage	VSAT	I _O =50mA, V _I ≤-10mV	-	0.75	1.5	V
		VCC≥4.5V, VEE = 0V ISINK =8mA, VI≥-10mV, NOTE 1	-	0.23	0.4	
Strobe "NO" Current	ISTR(ON)	-	-	3	-	mA
Output Leakage Current	ISINK	ISTR =3mA, V _I ≥10mV VO(P) =35V, VEE =VGND =-5V	-	0.2	50	nA
Input Voltage Range	VI(R)	NOTE 1	-14.5 to 13.0	-14.7 to 13.8	-	V
Positive Supply Current	Icc	-	-	3.0	7.5	mA
Negative Supply Current	IEE	-	-	-2.2	-5.0	mA
Strobe Current	ISTR	-	-	3	-	mA

Notes:

- 1. $0 \le T_A \le +70^{\circ}C$
- 2. The response time specified is for a 100mV input step with 5mV over drive.

Typical Performance Characteristics

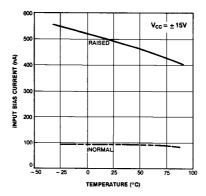


Figure 1. Input Bias Current Vs Temperature

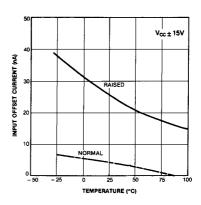


Figure 2. Input Offset Current Vs Temperature

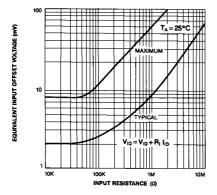


Figure 3. Offset Voltage vs Input Resistance

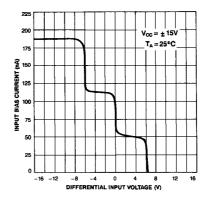


Figure 4. Input Bias Current vs Dfferential input voltage

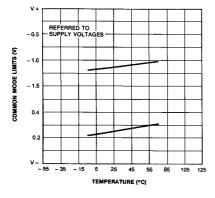


Figure 5. Common Mode Limits vs Temperature

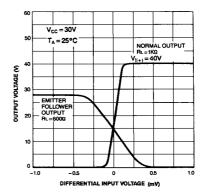


Figure 6. Output Voltage vs Differential input voltage

Typical Performance Characteristics (continued)

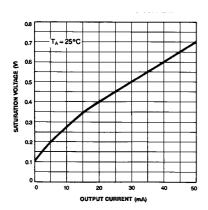


Figure 7. Saturation voltage vs Current

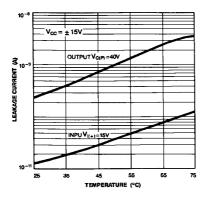
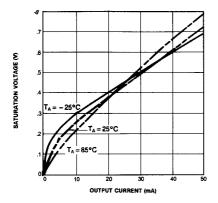



Figure 9. Leakage Current vs Temperature

Figure 11. Current Saturation Voltage

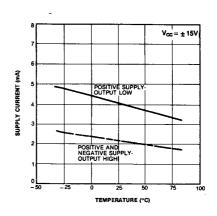


Figure 8. Supply Current vs Temperature

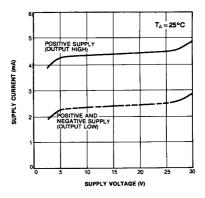


Figure 10. Supply Current vs Supply Voltage

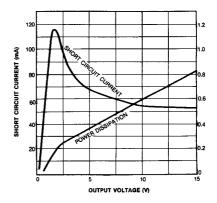
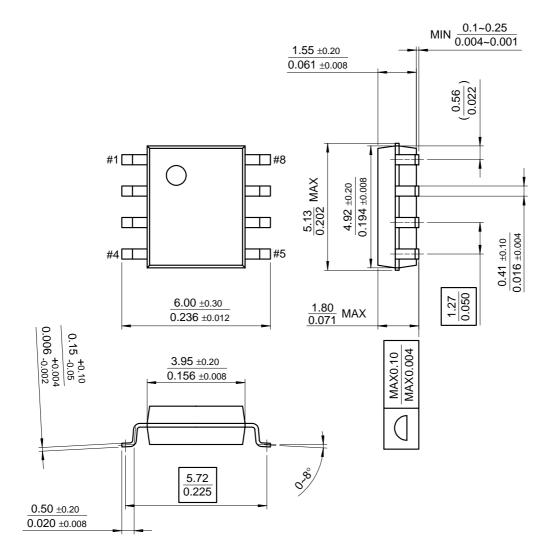


Figure 12. Output Limiting Characterstics

Mechanical Dimensions


Package

8-DIP 6.40 ±0.20 0.252 ±0.008 1.524 ± 0.10 0.060 ±0.004 0.46 ± 0.10 0.018 ± 0.004 #8 9.20 ±0.20 0.362 ±0.008 #5 2.54 3.30 ±0.30 $\frac{5.08}{0.200}$ MAX 0.130 ±0.012 7.62 0.300 $\frac{3.40~\pm 0.20}{0.134~\pm 0.008}$ $\frac{0.33}{0.013}\,\text{MIN}$ 0.25 ^{+0.10}_{-0.05} 0.010 +0.004 -0.002 0~15°

Mechanical Dimensions (Continued)

Package

8-SOP

Ordering Information

Product Number	Package	Operating Temperature
KA311	8-DIP	0 ~ +70°C
KA311D	8-SOP	0~+706

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com