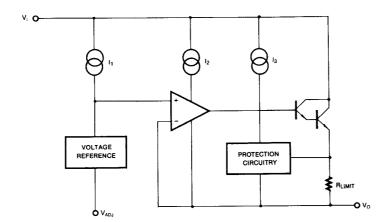

ADJUSTABLE VOLTAGE REGULATOR(POSITIVE)

3-TERMINAL 1A POSITIVE ADJUSTABLE REGULATOR

This monolithic integrated circuit is an adjustable 3-terminal positive voltage regulator designed to supply more than 1.5A of load current with an output voltage adjustable over a 1.2 to 37V. It employs internal current limiting, thermal shut-down and safe area compensation.

FEATURES


- Output Current In Excess of 1. 5A
- Output Adjustable Between 1. 2V and 37V
- Internal Thermal-Overload Protection
- Internal Short-Circuit Current-Limiting
- Output Transistor Sate-Area Compensation

ORDERING INFORMATION

Device	Package	Operating Temperature		
KA317	TO-220	0℃~125℃		

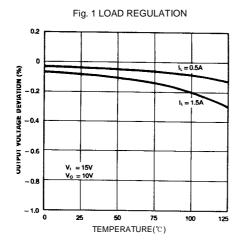
BLOCK DIAGRAM

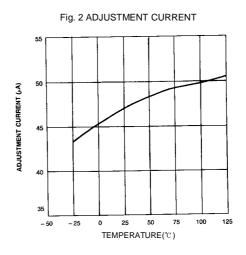
ADJUSTABLE VOLTAGE REGULATOR(POSITIVE)

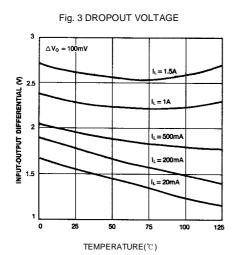
ABSOLUTE MAXIMUM RATINGS (T_A =25 $^{\circ}$ C, unless otherwise specified)

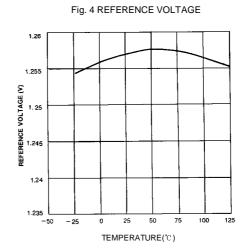
Characteristic	Symbol	Vlaue	Unit	
Input-Output Voltage Differential	V _I - V _O	40	V	
Lead Temperature	T _{LEAD}	230	\mathbb{C}	
Power Dissipation	P _D	Internally limited	=	
Operating Temperature Range	T _{OPR}	0 ~ +125	\mathbb{C}	
Storage Temperature Range	T _{STG}	-65 ~ + 125	$^{\circ}$	

ELECTRICAL CHARACTERISTICS

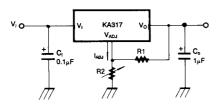

(V_I - V_O = 5V, I_O = 0.5A, 0° C \leq T_J \leq 125 $^{\circ}$ C, I_{MAX} = 1.5A, P_{MAX} = 20W, unless otherwise specified)


Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
Line Regulation	⊿Vo	T _A = 0 ~ 125 ℃	$3V \le V_I - V_O \le 40V$		0.01	0.04	%/V
			$3V \le V_I - V_O \le 40V$		0.02	0.07	%/V
	⊿Vo	T _A = 25 °C , 10mA	$A \leq I_O \leq I_{MAX}$				
		V _O ≤6V			18	25	mV
		$V_O \ge 5V$			0.4	0.5	%N₀
Load Regulation		$10mA \le I_O \le I_{MAX}$					
		V _O ≤5V			40	70	mV
		V _O ≥5V			0.8	1.5	%N₀
Adjustable Pin Current	I _{ADJ}				46	100	μ A
Adjustable Pin Current	⊿ I _{ADJ}	$3V \le V_1 - V_0 \le 40V$					
Change		$10mA \le I_O \le I_{MAX}$		2.0	5	μ A	
Change		$P \le P_{MAX}$					
	V_{REF}	$3V \le V_{IN} - V_{OUT} \le 40V$		1.20	1.25	1.30	V
Reference Voltage		$10mA \le I_O \le I_{MAX}$					
		$P_D \le P_{MAX}$					
Temperature Stability	ST _T				0.7		$\%N_0$
Minimum Load Current to Maintain Regulation	L _(MIN)	V _I - V _O = 40V			3.5	10	mA
Maximum Output Current	I _{O(MAX)}	V _I - V _O ≤ 15V, P _D	o≤P _{MAX}	1.5	2.2		۸
Maximum Output Current		V _I - V _O ≤40V, P _D	$_{0} \leq P_{MAX}, T_{A} = 25 ^{\circ} C$	0.156	0.4		Α
RMS Noise, % of Vout	e _N	T _A =25℃, 10Hz≤f≤10KHz			0.003	0.01	%No
	RR	V _O = 10V, f = 120Hz					
Ripple Rejection		without C _{ADJ}			60		dB
-		$C_{ADJ} = 10 \mu F$ 66 75					
Long-Term Stability,T _J = T _{HIGH}	ST	T _A = 25℃ for er	nd point		0.3	1	%
Long-Term Stability, TJ = THIGH		measurements,	1000HR		0.3	1	%
Thermal Resistance Junction to Case	$R_{ heta}$ JC				5		℃W


^{*} Load and line regulation are specified at constant junction temperature. Change in V_D due to heating effects must be taken into account separately. Pulse testing with low duty is used. ($P_{MAX} = 20W$)



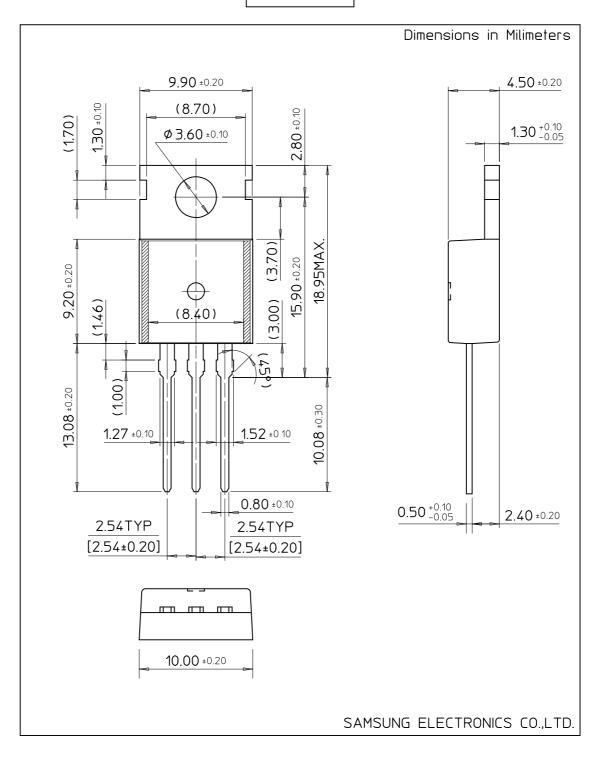
TYPICAL PERFORMANCE CHARACTERISTICS



SAMSUNG ELECTRONICS

TYPICAL APPLICATIONS

Fig. 5 Programmable Regulator


$$V_0 = 1.25V (1 + \frac{R_2}{R_1}) + I_{ADJ} R_2$$

 C_l is required when regulator is located an appreciable distance from power supply filter. C_O is not needed for stability, however, it does improve transient response.

Since I_{ADJ} is controlled to less than 100 µA, the error associated with this term is negligible in most applications.

TO-220

