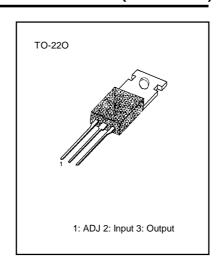
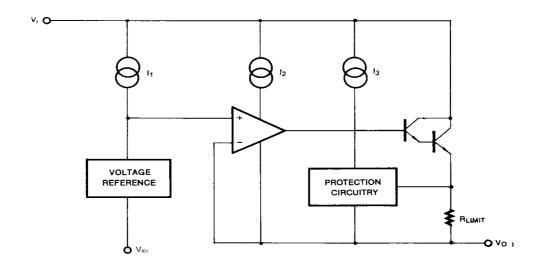
3-TERMINAL 1A NEGATIVE ADJUSTABLE REGULATOR


The KA337 is a 3-terminal negative adjustable regulator. It supply in excess of 1.5A over an output voltage range of -1.2V to -37V.

This regulator requires only two external resistors to

This regulator requires only two external resistors to set an output voltage and 1 capacitor to compensate frequency.

FEATURES


- Output current in excess of 1.5A
- Output voltage adjustable between -1.2V & 37V
- Internal thermal-overload protection
- Internal short-circuit current-limiting constant with temperature
- Output transistor safe-area compensation
- Floating operation for high-voltage applications
- Standard 3-pin. TO-220 package

ORDERING INFORMATION

Device	Package	Operating Temperature	
KA337	TO-220	0 ~ + 125 ℃	

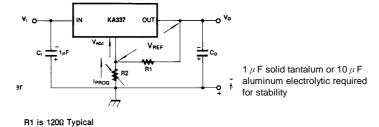
BOLCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS ($T_A=25\,^{\circ}$), unless otherwise specified)

Characteristic	Symbol	Value	Unit
Input-Output Voltage Differential	V _I - V _O	40	V
Power Dissipation	P_{D}	Internally limited	
Operating Temperature Range	T_OPR	0 ~ + 125	$\mathbb C$
Storage Temperature Range	T_{STG}	- 65 ~ + 150	$\mathbb C$

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Line Regulation	Vo	$T_A = 25 ^{\circ}$ - 40V \le V_0 - V_1 \le -3V		0.01	0.04	%/V
		- 40V≤V _O - V _I ≤-3V		0.02	0.07	
Load Regulation	Vo	$T_A = 25 ^{\circ}$ $10\text{mA} \le I_0 \le 0.5\text{A}$		15	50	mV
		10mA≤I ₀ ≤1.5A		15	150	
Adjustable Pin Current	I _{ADJ}			50	100	μ A
Adjustable Pin Current	⊿ l _{ADJ}	$T_A = 25 ^{\circ}$ $10\text{mA} \le I_0 \le 1.5\text{A}$ $-40\text{V} \le V_0 - V_1 \le -3\text{V}$		2	5	μ Α
	V _{REF}	T _A = 25℃	-1.213	-1.250	-1.287	
Reference Voltage		$-40V \le V_0 - V_1 \le -3V$ $10mA \le I_0 \le 1.5A$	-1.200	-1.250	-1.300	V
Temperature Stability	ILŞATINT)			0.6		m%A.
Minimum Load Current		- 40V≤V ₀ - V _I ≤-3V		2.5	10	
to Maintain Rejection		- 10V≤V ₀ - V _I ≤-3V		1.5	6	
Output Noise Ripple Rejection	en RR	T _A = 25 °C 10Hz≤f≤10KHz		3×V _{OUT}		V/10 ⁶ dB
		V _O = -10V, f = 120Hz		60		
		$C_{ADJ} = 10 \mu$ F	66	77		
Long Term Stability	ST	T _J = 125 °C ,1000Hours		0.3	1	%
Thermal Resistance Junction to Case	R _{EJC}			4		°C/W


^{*} Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

TYPICAL APPLICATIONS

ADJUSTABLE VOLTAGE REGULATOR

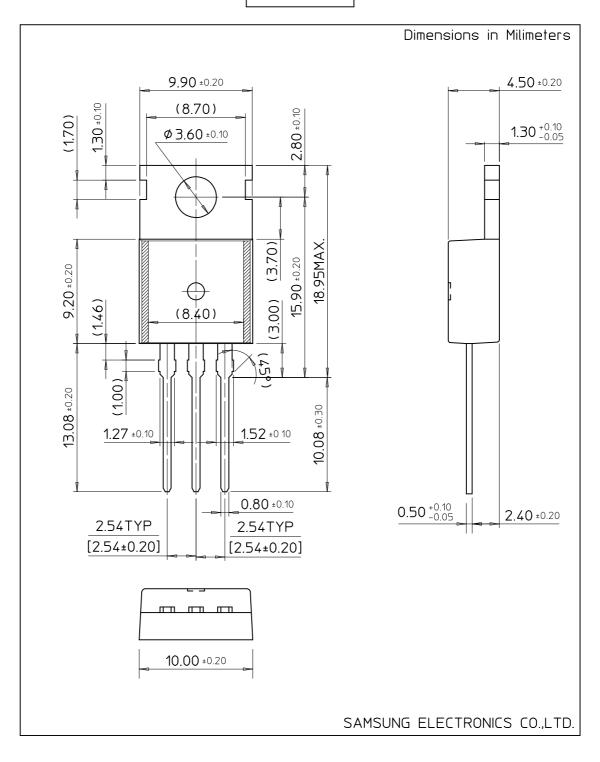
1 μ F solid tantalum required only if the regulator is more than 10cm from the power supply filter capacitor

R2 = R1 ($\frac{V_0}{V_{REF}}$ - 1) where V_{REF} = -1.25V Typical

The KA337 is a 3-terminal floating regulator. In operation, the KA337 develops and maintains a nominal $\,$ -1.25 volt reference V_{REF} between its output and adjustment terminals. This reference voltage is converted to a programming current (I_{PROG}) by R1 (see FIG. 2), and this constant current flows through R2 from ground. The regulated output voltage is given by:

$$V_0 = V_{REF} (1 + \frac{R2}{R1}) + 1_{ADJ} R2$$

Since the current into the adjustment terminal ($I_{AD,J}$) represents an error term in the equation, the KA337 was designed to control $I_{AD,J}$ to less than 100 μ A and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will increase.


Since the KA337 is a floating regulator, it is only the voltage differential across the circuit that is important to performance, and operation at high voltages with respect to ground is possible.

LOAD REGULATION

The KA337 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

TO-220

