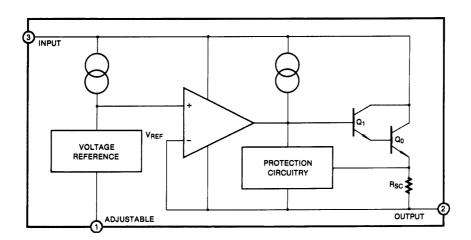
TO -3P

3-TERMINAL 3A POSITIVE ADJUSTABLE VOLTAGE REGULATORS

The KA350 is an adjustable 3-terminal positive voltage regulator capable of supplying in excess of 3.0 A over an output voltage range of 1.2V to 33 V $\,$

TO-220

FEATURES


- Output adjustable between 1.2V and 33V
- Guaranteed 3A output current
- Internal thermal overload protection
- Load regulation (Typ: 0.1%)
- Line regulation (Typ: 0.005%V)
- Internal short-circuit current limiting
- Output transistor safe-area compensation

ORDERING INFORMATION

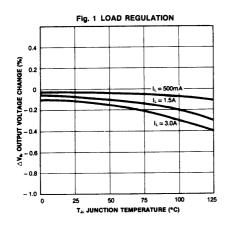
Device	Package	Operating Temperature
KA350H	TO - 3P	0 ~ 125℃
KA350	TO - 220	0~1250

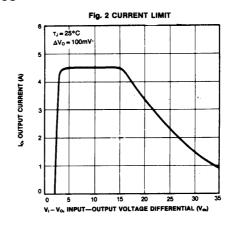
1: Adj 2: Output 3: Input

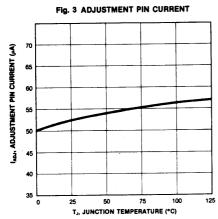
BLOCK DIAGRAM

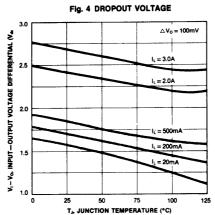
ABSOLUTE MAXIMUM RATINGS ($T_A = 25\,^{\circ}\text{C}$, unless otherwise specified)

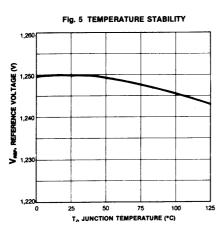
Characteristic	Symbol	Value	Unit	
Input-Output Voltage Differential	V _I - V _O	35	V _{DC}	
Lead Temperature	T _{LEAD}	300	\mathbb{C}	
(Soldering, 10sec)	EEAD		_	
Power Dissipation	P_D	Internally limited		
Operating Temperature Range	T _{OPR}	0 ~ + 125	$\mathbb C$	
Storage Temperature Range	T _{STG}	-65 ~ + 150	${\mathbb C}$	

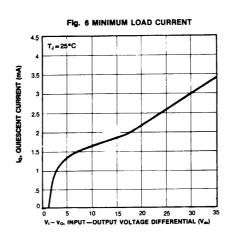

ELECTRICAL CHARACTERISTICS

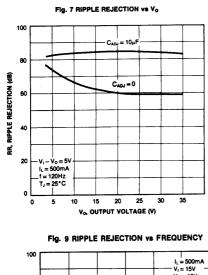

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Line Regulation	⊿Vo	$T_A = 25 ^{\circ}\!$		0.05	0.03	%/V
Load Regulation	⊿Vo	$\begin{split} T_A &= 25^{\circ}\!$		5 0.1	25 0.5	mV %
Adjustment Pin Current	I _{ADJ}			50	100	μ A
Adjustment Pin Current Change	ΔI_{ADJ}	$3V \le V_I - V_O \le 35V$, $10mA \le I_L \le 3A$, $P_D \le P_{MAX}$		0.2	5.0	μΑ
Thermal Regulation	REG_T	Pulse = 20mS, $T_A = 25 ^{\circ}\!$		0.002		%/W
Reference Voltage	V_{REF}	$3V \le V_1 - V_0 \le 35V$, $10mA \le I_0 \le 3A$, $P \le 30W$	1.2	1.25	1.30	٧
Line Regulation	⊿Vo	$3.0V \le V_1 - V_0 \le 35V$		0.02	0.07	%/W
Load Regulation	⊿Vo	$10mA \le I_O \le 3.0A$ $V_O \le 5.0V$ $V_O \ge 5.0V$		20 0.3	70 1.5	mV %
Temperature Stability	ST⊤	T _J = 0 ℃ to 125 ℃		1.0		%
Maximum Output Current	I _{O(MAX)}	$V_1 - V_0 \le 10V, P_D \le P_{MAX}$	3.0	4.5		A
Nr. 1 10		$V_1 - V_0 = 30V, P_D \le P_{MAX}, T_A = 25 \degree$	0.25	1.0	40	A
Minimum Load Current	I _{L(MIN)}	$V_1 - V_0 = 35V$		3.5	10	mA
RMS Noise, % of V _{OUT}	V_N	10Hz≤f≤10KHz, $T_A = 25$ °C		0.003		%
Ripple Rejection	RR	$V_{O} = 10V, f = 120Hz,$ $C_{ADJ} = 0$ $C_{ADJ} = 10 \mu F$	66	65 80		dB dB
Long-Term Stability	ST	T _J = 125 ℃		0.3	1	%/1000HR

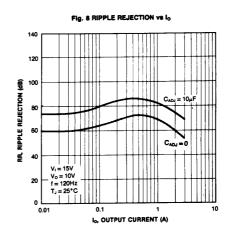

Note 1: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

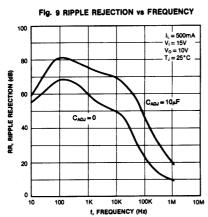


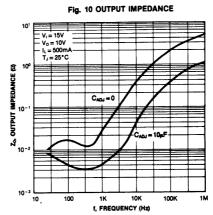

TYPICAL PERFORMANCE CHARACTERISTICS

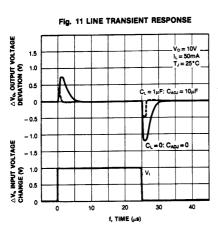


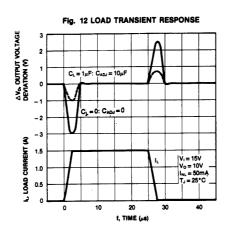









TYPICAL PERFORMANCE CHARACTERISTICS



APPLICATION INFORMATION STANDARD APPLICATION

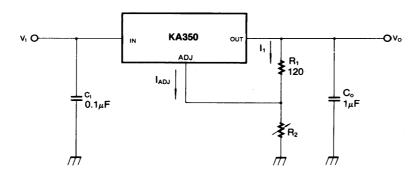


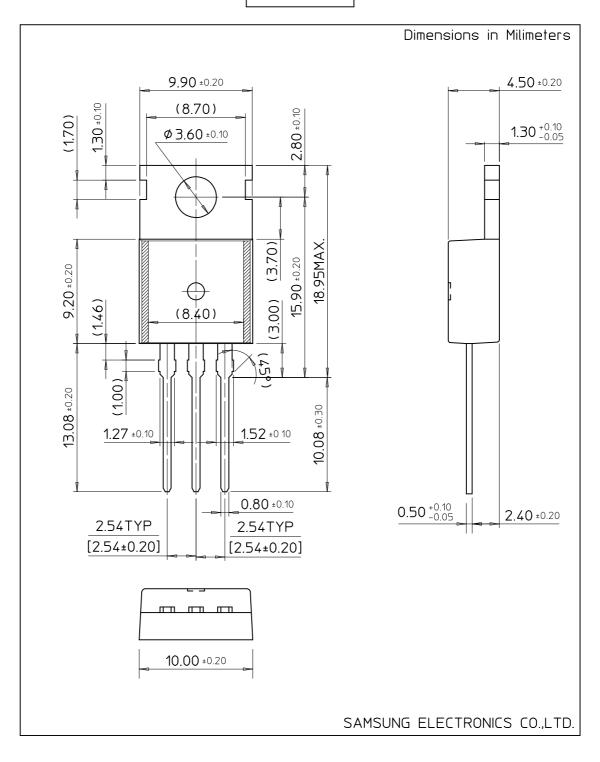
Fig. 13

- $C_{l}\;:C_{l}$ is required if the regulator is located an appreciable distance from power supply filter.
- C_{O} : Output capacitors in the range of 1 μF to 100 μF of aluminum or tantalum electronic are commonly used to provide improved output impedance and rejection of transients.

In operation, the KA350 develops a nominal 1.25V reference voltage, V_{REF} , between the output and adjustment terminal. The reference voltage is impressed across program resistor R_1 and, since the voltage is constant, a constant current I_1 then flows through the output set resistor R_2 , giving an output voltage of


$$V_0 = 1.25V(1 + \frac{R_2}{R_1}) + I_{ADJ} R_2$$

Since I_{ADJ} current (less than 100μ A) from the adjustment terminal represents an error term, the KA350 was designed to minimize I_{ADJ} and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output voltage will rise.


Since the KA350 is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltage with respect to ground is possible.

TO-3P

TO-220

