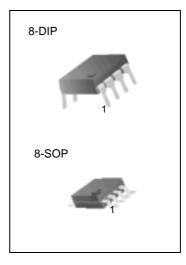
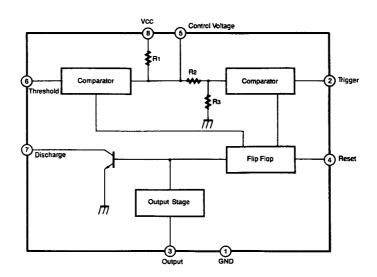


KA555/KA555I Single Timer

Features


- High Current Drive Capability (200mA)
- Adjustable Duty Cycle
- Temperature Stability of 0.005%/°C
- Timing From µSec To Hours
- Turn Off Time Less Than 2µSec

Applications


- Precision Timing
- Pulse Generation
- Time Delay Generation
- Sequential Timing

Description

The KA555/KA555I is a highly stable controller capable of producing accurate timing pulses. With monostable operation, the time delay is controlled by one external and one capacitor. With astable operation, the frequency and duty cycle are accurately controlled with two external resistors and one capacitor.

Internal Block Diagram

Absolute Maximum Ratings (TA = 25°C)

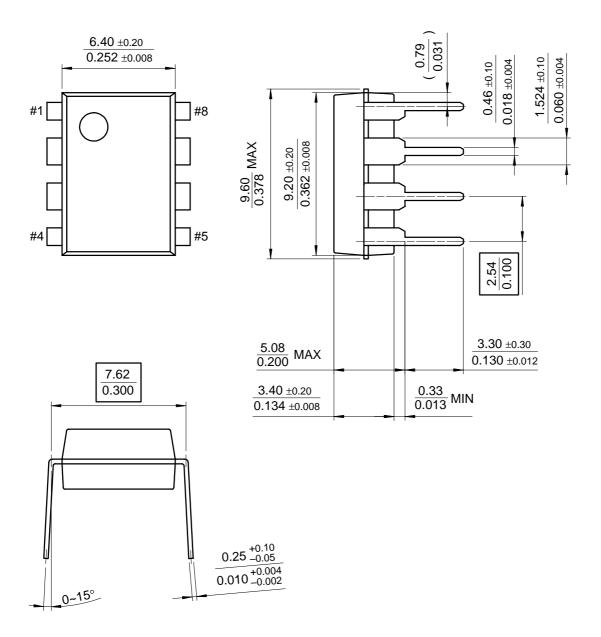
Parameter	Symbol	Value	Unit
Supply Voltage	Vcc	16	V
Lead Temperature (soldering 10sec)	TLEAD	300	°C
Power Dissipation	PD	600	mW
Operating Temperature Range KA555/KA555I	TOPR	0 ~+ 70	°C
Storage Temperature Range	TSTG	- 65 ~ + 150	°C

Electrical Characteristics

(TA = 25° C, V_{CC} = 5 ~ 15V, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage	Vcc		4.5	-	16	V
Supply Current *1(low stable)	ICC	Vcc = 5V, RL = ∞	-	3	6	mA
		VCC = 15V, RL = ∞	-	7.5	15	mA
Timing Error * ² (Monostable) Initial Accuracy Drift with Temperature Drift with Supply Voltage	ACCUR Δt/ΔT Δt/ΔVCC	$R_A = 1K\Omega$ to100KΩ C = 0.1μF	-	1.0 50 0.1	3.0 0.5	% ppm/°C %/V
Timing Error ^{*2} (astable) Intial Accuracy Drift with Temperature Drift with Supply Voltage	ACCUR Δt/ΔT Δt/ΔVCC	RA = 1KΩ to 100KΩ C = 0.1μF	-	2.25 150 0.3	-	% ppm/°C %/V
Control Voltage	Vc	V _{CC} = 15V	9.0	10.0	11.0	V
		VCC = 5V	2.6	3.33	4.0	V
Threshold Voltage	VTH	Vcc = 15 V	-	10.0	-	V
		VCC = 5V	-	3.33	-	V
Threshold Current *3	Ітн	-	-	0.1	0.25	μΑ
Trigger Voltage		VCC = 5V	1.1	1.67	2.2	V
	Vtr	Vcc = 15V	4.5	5	5.6	V
Trigger Current	ITR	VTR = 0V		0.01	2.0	μΑ
Reset Voltage	VRST	-	0.4	0.7	1.0	V
Reset Current	IRST	-		0.1	0.4	mA
Low Output Voltage	Vol	V _{CC} = 15V ISINK = 10mA ISINK = 50mA	-	0.06 0.3	0.25 0.75	V V
		VCC = 5V ISINK = 5mA	-	0.05	0.35	V
High Output Voltage	Voн	VCC = 15V ISOURCE = 200mA ISOURCE = 100mA	12.75	12.5 13.3	-	V V
		V _{CC} = 5V ISOURCE = 100mA	2.75	3.3	-	V
Rise Time of Output	t _R	-	-	100	-	ns
Fall Time of Output	tF	-	-	100	-	ns
Discharge Leakage Current	ILKG	-	-	20	100	nA

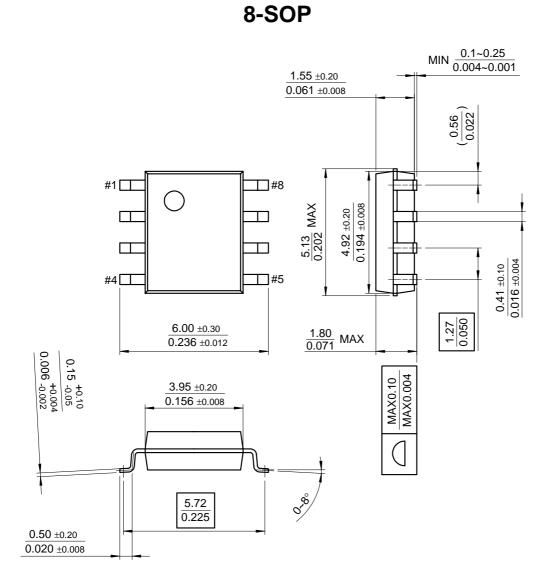
Notes:


1. Supply current when output is high is typically 1mA less at $V_{CC} = 5V$

2. Tested at VCC = 5.0V and VCC = 15V

3. This will determine maximum value of RA + RB for 15V operation, the max. total R = $20M\Omega$, and for 5V operation the max. total R = $6.7M\Omega$

Mechanical Dimensions


Package

8-DIP

Mechanical Dimensions (Continued)

Package

Ordering Information

Product Number	Package	Operating Temperature		
KA555	8-DIP	0 ~ +70°C		
KA555D	8-SOP	0~+70 C		
KA555I	8-DIP	-40 ~ +85°C		

KA555/KA555I

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com