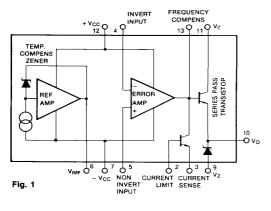
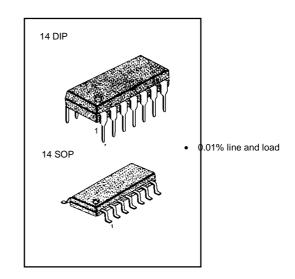
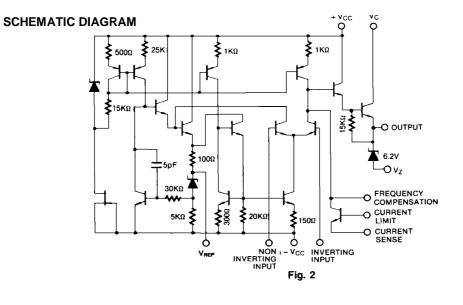
PRECISION VOLTAGE REGULATOR


The KA723/I are monolithic integrated Circuit voltage regulators featuring high ripple rejection, excellent output and load regulation, excellent temperature stability, and low standby current. The KA723/I are also useful in a wide range of other applications such as a shunt regulator, a current regulator or a temperature controller. The KA723 is characteristic for operation on from $0\,\degree$ to $70\,\degree$, and the KA723 from -25 \degree to +85 \degree .


FEATURES

• Positive or Negative Supply Operation.

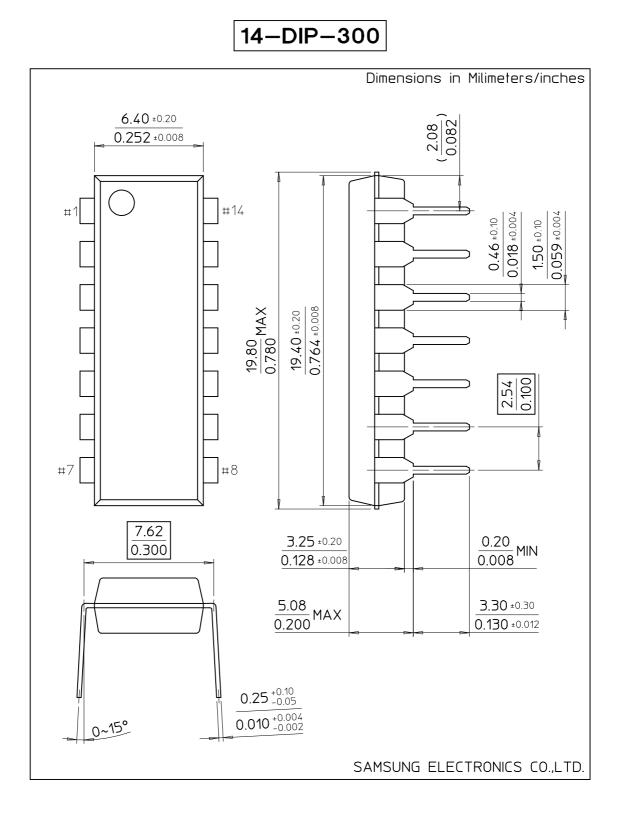
- regulation
- Output voltage adjustable from 2 to 37 volts.
- Output current to 150mA without external pass transistor


BLOCK DIAGRAM

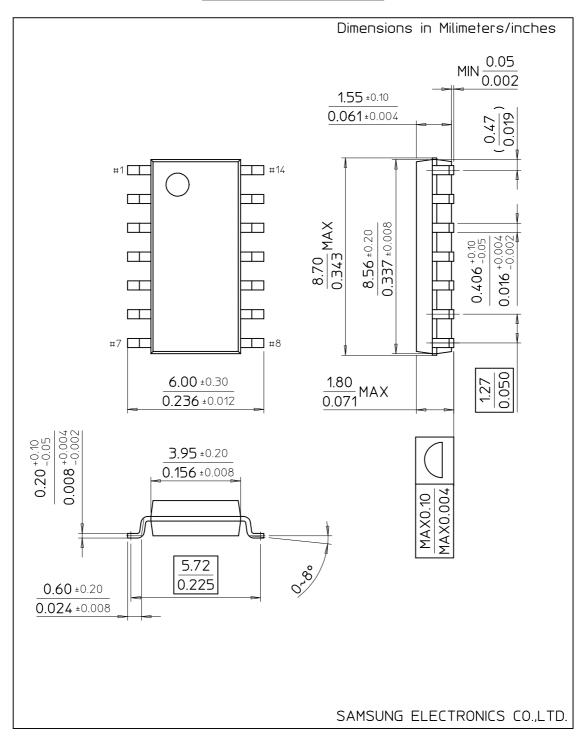
ORDERING INFORMATION

Device	Package	Operating Temperature	
KA723	14 DIP	0 ~ +70 ℃	
KA723D	14 SOP	0~+/0C	
KA723I	14 DIP	-25 ~ +85 ℃	
KA723ID	14 SOP	-25 ~ +05 C	

ABSOLUTE MAXIMUM RATINGS


Characteristic		Symbol	Value	Unit	
Pulse Voltage from V + to V - (50ms)		V _{I(P)}	50	V _{PEAK}	
Continuous Voltage from V + to V -		VI	40	V	
Input-Output Voltage Differential		V _I - V _O	40	V	
Maximum Output Current		Ι _ο	150	mA	
Differential Input Voltage		V _{ID}	±5	V	
Voltage Between Non-Inverting Input and V $-$		VIE	8	V	
Current from Vz		Iz	25	mA	
Current from V _{REF}		I _{REF}	15	mA	
Power Dissipation		PD	1000	m/W	
Operating Temperature Range	KA723	T _{OPR}	0 ~ +70	C	
	KA723I		-25 ~ +85	C	
Storage Temperature Range		T _{STG}	-65 ~ + 150	C	

ELECTRICAL CHARACTERISTICS


(unless otherwise specified, T_A = 25, °C, V_I = V_{CC} = 12V, V_O = + 5V, I_L = 1.0mA, R_{SC} = 0, C_I = 100pF, C_{REF}=0 and devider impedance as seen by error Amplifier \leq 10K Ω connected as shown in figure 3)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit	
	⊿Vo	V ₁ = 12V to 15V		0.01	0.1		
		V _I = 12V to 40V 0.1			0.5	%	
Line Regulation		$T_{MIN} \le T_A \le T_{MAX}$			0.3	3 %	
		$V_1 = 12V$ to 15V					
	⊿Vo	$I_0 = 1mA$ to 50mA		0.03	0.2	%	
Load Regulation		$T_{MIN} \le T \le T_{MAX}$			0.6		
		$I_0 = 1$ to 50mA					
Ripple Rejection	RR	$f = 100Hz$ to $10KHz$, $C_{REF} = 0$		74		dB	
		f = 100Hz to 10KHz,C _{REF} =5 μ F		86		dB	
Average Temperature Coefficient of Output Voltage	⊿V₀/⊿T	$T_{MIN}\!\!\leq\!T\!\leq\!T_{MAX}$		0.003	0.015	%/℃	
Short Circuit Current Limit	I _{sc}	$R_{SC} = 10 \Omega$, $V_{O} = 0$		65		mA	
Reference Voltage	V _{REF}		6.80	7.15	7.50	V	
	V _N	$f = 100Hz$ to 10KHz, $C_{REF} = 0$		20		μV _{rms}	
Output Noise Voltage		f = 100Hz to 10KHz, C_{REF} =5 μ F		2.5		µ [⊥] v rms	
Long-term Stability	ST			0.1		%/ 1000HR	
Standby Current Drain	ID	$I_{L} = 0, V_{I} = 30V$		2.0	4.0	mA	
Input Voltage Range	VI		9.5		40	V	
Output Voltage Range	Vo		2.0		37	V	
Input-Output Voltage Differential	VD		3.0		38	V	

14-SOP-225B

