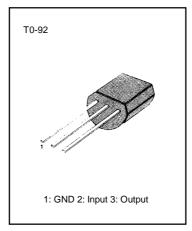
3-TERMINAL 0.1A NEGATIVE VOLTAGE REGULATORS


These regulators employ internal current limiting and thermal shutdown, making them essentially indestructible.

FEATURES

Output current up to 100mA

SCHEMATIC DIAGRAM

- No external components
- · Internal short circuit current limiting

ORDERING INFORMATION

Device Package **Operating Temperature** KA79LXXAZ TO - 92 0 ~ + 125 ℃

- Internal thermal over load protection

-O GND **≩**R15 **≸**R26 Q12 **D**3 Q7 **₹**R18 Q17 Q15 Q16 Q1 **≸**R29 **≸**R7 R28 R24 **≸**R25 **≸**R27

Characteristic	Symbol	Value	Unit
Input Voltage (-5V)		-30	
(-12V to -18V)	V_{l}	-35	V_{DC}
(-24V)		-40	
Operating Temperature Range	T _{OPR}	0 ~ + 125	$\mathbb C$
Storage Temperature Range	T _{STG}	-65 ~ + 150	${\mathbb C}$

KA79L05A ELECTRICAL CHARACTERISTICS

(V_I = -10V, I_O = 40mA, C_I = 0.33 μ F, C_O = 0.1 μ F, 0 °C \leq T $_{\rm J} \leq$ + 125 °C, unless otherwise specified)

Charact	eristic	Symbol	Test	Conditions	Min	Тур	Max	Unit
Output Voltage		Vo	T _J = +25 ℃		- 4.8	- 5.0	- 5.2	V
1: 5 1:				$-7.0V \ge V_1 \ge -20V$		15	150	
Line Regulation		⊿Vo	T _J =25℃	$-8V \ge V_1 \ge -20V$			100	mV
		⊿Vo	T.₁=25℃	$1.0 mA \le I_0 \le 100 mA$		20	60	
Load Regulation	Load Regulation		1 J = 25 C	$1.0mA\!\leq\!I_{O}\!\leq\!40mA$		10	30	mV
Output Voltago	Output Voltage		$-7.0V > V_1 > -20V$, $1.0mA \le I_0 \le 40mA$		- 4.75		- 5.25	
Output voltage			$V_1 = -10V$, $1.0 \text{mA} \le I_0 \le 70 \text{mA}$		- 4.75		- 5.25	V
Outcoant Current			T _J = +25 ℃			2.0	6.0	mA
Quiescent Current	·	lα	$T_J = +125^{\circ}{\rm C}$				5.5	IIIA
Quiescent	With Line	⊿lo	$-8V \ge V_I \ge -20V$				1.5	
Current Change	With Load	ΔiQ	$1.0mA \le I_O \le 40mA$				0.1	mA
Output Noise Volta	Voltage V_N $T_A = 25 ^{\circ}\text{C}, 10\text{Hz} \leq f \leq 100\text{KHz}$			30		μV		
Ripple Rejection		RR	$\begin{split} f &= 120 Hz, -8 V \geq V_I \geq -18 V \\ T_J &= +25 {}^{\circ}\!$		41	60		dB
		IXIX			71			uD.
Dropout Voltage		V_D	T _J = +25 ℃			1.7		V

Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

KA79L12A ELECTRICAL CHARACTERISTICS

(V_I = -19V, I_O = 40mA, C_I = 0.33 μ F, C_O = 0.1 μ F, 0 $^{\circ}$ C \leq T_J \leq + 125 $^{\circ}$ C, unless otherwise specified)

Characte	ristic	Symbol	Test Conditions		Min	Тур	Max	Unit
Output Voltage		Vo	T _J = +25 ℃		-11.5	-12.0	-12.5	V
				-14.5V≥V _I ≥-27V			250	mV
Line Regulation		⊿Vo	T _J =25 ℃	$-16V \ge V_1 \ge -27V$			200	
		⊿Vo	T., =25 ℃	$1.0 \text{mA} \le I_0 \le 100 \text{mA}$			100	
Load Regulation		∠ v ₀	1 J = 23 C	$1.0\text{mA} \le I_0 \le 40\text{mA}$			50	mV
0		Vo	$-14.5V > V_1 > -27V$, $1.0mA \le I_0 \le 40mA$		-11.4		-12.6	
Output voltage	Output Voltage		$V_1 = -19V, 1.0 \text{mA} \le I_0 \le 70 \text{mA}$		-11.4		-12.6	V
Quiescent Curren	•	lα	T _J = +25 ℃				6.5	
Quiescent Curren	ι		T _J = +125℃				6.0	mA
Quiescent	With Line		-16V≥V _I ≥-2	7V			1.5	
Current Change	With Load	ΔiQ	1.0mA≤ I _O ≤40mA				0.1	mA
Output Noise Volt	age	V _N	T _A = 25 °C ,10Hz ≤ f ≤ 100KHz			80		μV
Ripple Rejection		RR	f = 120Hz, -150V ≥ V_1 ≥ -25V T_J = +25 $^{\circ}$ C		37	42		dB
Dropout Voltage		V _D	T _J = +25℃			1.7		V

^{*}Load and line regulation are specified at constant junction temperature. Change in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

KA79L15A ELECTRICAL CHARACTERISTICS

(V_I = -23V, I_O = 40mA, C_I = 0.33 μ F, C_O = 0.1 μ F, 0 $^{\circ}$ $^{\circ}$ $^{\circ}$ T $_{\rm J}$ $^{\circ}$ + 125 $^{\circ}$ C, unless otherwise specified)

Character	ristic	Symbol	Test	Conditions	Min	Тур	Max	Unit
Output Voltage		Vo	T _J = +25 ℃		-14.4	-15.0	-15.6	V
		41/		-17.5V≥V _I ≥-30V			300	.,
Line Regulation		⊿Vo	T _J =25 ℃	$-27V \ge V_1 \ge -30V$			250	mV
		⊿Vo	T.₁=25℃	$1.0 \text{mA} \le I_0 \le 100 \text{mA}$			150	
Load Regulation		∠/ V _O	1)=25 C	$1.0\text{mA} \le I_0 \le 40\text{mA}$			75	mV
Output Voltage		Vo	$-17.5V > V_1 > -30V$, $1.0mA \le I_0 \le 40mA$		-14.25		-15.75	
			$V_1 = -23V, 1.0 \text{mA} \le I_0 \le 70 \text{mA}$		-14.25		-15.75	V
Quiescent Curren	0: 10 1		T _J = +25 ℃				6.5	
Quiescent Curren	ι	lα	T _J = +125℃				6.0	mA
Quiescent	With Line	41	-20V≥V _I ≥-30V				1.5	
Current Change	With Load	⊿la	1.0mA≤ I _O ≤40mA				0.1	mA
Output Noise Volt	Output Noise Voltage V_N $T_A = 25 ^{\circ} ,10 \text{Hz} \leq f \leq 100 \text{KHz}$			90		μ V		
Ripple Rejection		RR	f = 120Hz, -18.5V≥V₁≥-28.5V		34	39		dB
Trippie Trojection		IXIX	T _J = +25 ℃		04	33		uБ
Dropout Voltage		V_D	T _J = +25 ℃			1.7		V

^{*}Load and line regulation are specified at constant junction temperature. Change in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

KA79L18A ELECTRICAL CHARACTERISTICS

(V_I = -27V, I_O = 40mA, C_I = 0.33 μ F, C_O = 0.1 μ F, 0 $^{\circ}$ C \leq T_J \leq + 125 $^{\circ}$ C, unless otherwise specified)

Charact	eristic	Symbol	ol Test Conditions		Min	Тур	Max	Unit
Output Voltage		Vo	T _J = +25 ℃		-17.3	-18.0	-18.7	V
		411	T 05%	$-20.7V \ge V_1 \ge -33V$			325	mV
Line Regulation		△Vo	T.₁ =25 °C	$-21V \ge V_1 \ge -33V$			275	
		⊿Vo	T.₁=25℃	$1.0mA\!\leq\!I_{O}\!\leq\!100mA$			170	,,
Load Regulation		∠ v ₀	1 J = 25 C	$1.0mA\!\leq\!I_{O}\!\leq\!40mA$			85	mV
Output Valtage	Output Voltage		$-20.7V > V_1 > -33V$, $1.0mA \le I_0 \le 40mA$		-17.1		-18.9	
Output voltage			$V_1 = -1.0V, 1.0 \text{mA} \le I_0 \le 70 \text{mA}$		-17.1		-18.9	V
Quiescent Current		lα	T _J = +25 ℃				6.5	
Quiescent Current	L		T _J = +125 ℃				6.0	mA
Quiescent	With Line	41	$-21V \ge V_1 \ge -33V$				1.5	
Current Change	With Load	⊿la	$1.0\text{mA} \le I_{O} \le 40\text{mA}$				0.1	mA
Output Noise Voltage		V _N	T _A = 25 °C ,10Hz ≤ f ≤ 100KHz			150		μ V
Ripple Rejection		RR	f = 120Hz, -23V ≥ V_1 ≥ -33V T_J = +25 $^{\circ}$		33 48	48		dB
		M				.0		uБ
Dropout Voltage		V_D	T _J = +25 ℃			1.7		V

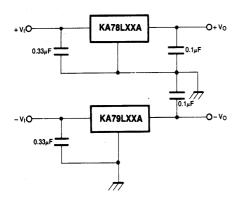
^{*}Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

KA79L24A ELECTRICAL CHARACTERISTICS

(V_I = -33V, I_O = 40mA, C_I = 0.33 μ F, C_O = 0.1 μ F, 0 °C \leq T_J \leq + 125 °C, unless otherwise specified)

Charact	eristic	Symbol	Test Conditions		Min	Тур	Max	Unit
Output Voltage		Vo	T _J = +25 ℃		-23	-24	-25	V
				-27V≥V _I ≥-38V			350	.,
Line Regulation		⊿Vo	T₁=25°C	-28V≥V _I ≥-38V			300	mV
		411	T 05%	$1.0 \text{mA} \le I_0 \le 100 \text{mA}$			200	\/
Load Regulation		⊿Vo	T _J =25℃	$1.0 \text{mA} \le I_O \le 40 \text{mA}$			100	mV
Output Voltage	Output Voltage		$-27V > V_1 > -38V$, $1.0mA \le I_0 \le 40mA$		-22.8		-25.2	.,
Output voltage			$V_1 = -33V, 1.0 \text{mA} \le I_0 \le 70 \text{mA}$		-22.8		-25.2	V
0 1 10			T _J = +25 ℃				6.5	A
Quiescent Curren	I	lα	T _J = +125 ℃				6.0	mA
Quiescent	With Line	⊿lo	-28V≥V₁≥-38V				1.5	
Current Change	With Load		1.0mA≤I _O ≤40mA				0.1	mA
Output Noise Volt	age	V _N	T _A = 25 °C ,10Hz ≤ f ≤ 100KHz			200		μV
Ripple Rejection		RR	f = 120Hz, -29V≥V₁≥ -35V		31	47		dB
Tripple rejection		IXIX	T _J = +25 ℃		01	71		ub
Dropout Voltage		V_D	T _J = +25 ℃			1.7		V

^{*}Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.


TYPICAL APPLICATIONS

Design Considerations

The KA79LXXA Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition. Internal Short-Circuit Protection that limits the maximum current the circuit will pass.

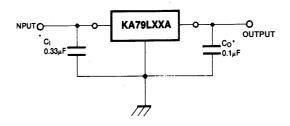
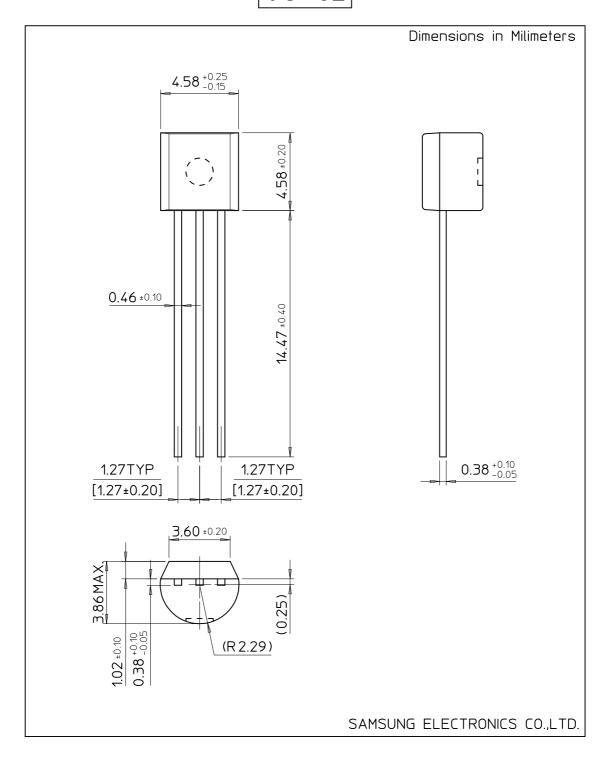

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass

Fig. 1 POSITIVE AND NEGATIVE REGULATOR

capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

Fig. 2 TYPICAL APPLICATION



A common ground is required between the Input and the output voltages. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.

- $* = C_1$ is required if regulator is located an appreciable distance from power supply filter.
- * * = C_0 improves stability and transient response.

TO-92

