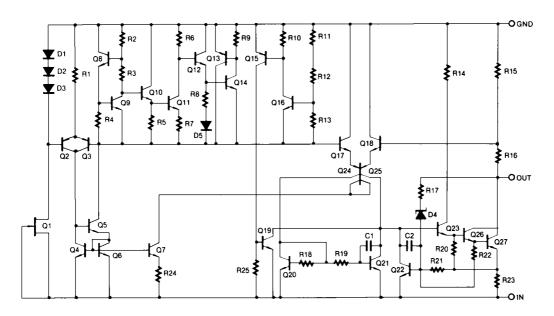

#### 3-TERMINAL 0.5A NEGATIVE VOLTAGE REGULATORS

The KA79MXX series of 3-Terminal medium current negative voltage regulators are monolithic integrated circuits designed as fixed voltage regulators. These regulators employ internal current limiting, thermal shutdown and safe-area compensation making them essentially in destructible.




#### **FEATURES**

- No external components requiredq
- Output current in excess of 0.5A
- Internal thermal-overload protection
- · Internal short circuit current limiting
- Output transistor safe-area compensation

#### **ORDERING INFORMATION**

| Device  | Package | Operating Temperature |
|---------|---------|-----------------------|
| KA79MXX | TO-220  | 0~ 125℃               |

#### **SCHEMATHIC DIAGRAM**





# ABSOLUTE MAXIMUM RATINGS (T\_A = 25 $^{\circ}$ C, unless otherwise specified)

| Characteristic                                  | Symbol            | Value     | Unit         |
|-------------------------------------------------|-------------------|-----------|--------------|
| Input Voltage(for V <sub>O</sub> = -5V to -18V) | Vı                | -35       | V            |
| (for $V_0 = -24V$ )                             | $V_{l}$           | -40       | V            |
| Thermal Resistance Junction-Cases               | $R_{\theta JC}$   | 5         | °C/W         |
| Thermal Resistance Junction-Air                 | R <sub>∂ JA</sub> | 65        | °C <b>/W</b> |
| Operating Temperature Range                     | T <sub>OPR</sub>  | 0~ +125   | $\mathbb C$  |
| Storage Temperature Range                       | T <sub>STG</sub>  | 65~ + 125 | $\mathbb{C}$ |

#### **KA79MO5 ELECTRICAL CHARACTERISTICS**

(Refer to test circuit,  $0 \le T_J \le 125$ ,  $I_0 = 350 \text{mA}$ ,  $V_I = 10 \text{V}$ ,unless otherwise specified,  $C_I = 0.33 \,\mu$  F, $C_0 = 0.1 \,\mu$  F)

| Characteristic        | Symbol                | Test condition                                   | MIN   | TYP  | MAX   | Unit  |
|-----------------------|-----------------------|--------------------------------------------------|-------|------|-------|-------|
|                       |                       | T <sub>J</sub> = 25℃                             | -4.8  | -5   | -5.2  | 1     |
| Output Voltage        | Vo                    | I <sub>O</sub> = 5 to 350mA                      | -4.75 | -5   | -5.25 | V     |
|                       |                       | $V_1 = -7 \text{ to } -25V$                      |       |      |       |       |
| Line Regulation       | ⊿Vo                   | T <sub>,i=</sub> 25 ℃ V <sub>i=</sub> -7 to -25V |       | 7.0  | 50    | mV    |
| Line Regulation       | 2 00                  | $V_{i}$ = -8 to -25V                             |       | 2.0  | 30    | 111 V |
| Load Regulation       | ⊿Vo                   | $I_0$ = 5mA to 500mA<br>$T_J$ = 25 °C            |       | 30   | 100   | mV    |
| Quiescent Current     | ΙQ                    | T <sub>J</sub> = 25℃                             |       | 3.0  | 6.0   | mA    |
| Quiescent Current     | ⊿IQ                   | I <sub>O</sub> = 5 to 350mA                      |       |      | 0.4   | mA    |
| Change                |                       | I <sub>O</sub> = 200mA                           |       |      | 0.4   |       |
| - Change              |                       | $V_{I} = -8V \text{ to } -25V$                   |       |      |       |       |
| Output Voltage Drift  | ⊿ V <sub>0</sub> /⊿ T | $I_O = 5mA$                                      |       | -0.2 |       | mV/℃  |
| Output Noise Voltage  | V <sub>N</sub>        | f = 10Hz, 100Khz                                 |       | 40   |       | uV    |
| Output Wolse Voltage  | VN                    | T <sub>J</sub> = 25 ℃                            |       | 40   |       | uv    |
| Ripple Rejection      | RR                    | f = 120Hz                                        | 54    | 60   |       | dB    |
| Tupple Hojection      | 13.13                 | $V_j = -8 \text{ to } -18V$                      | Ŭ.    |      |       | u.b   |
| Dropout Voltage       | V <sub>D</sub>        | T <sub>J</sub> = 25 °C , I <sub>O</sub> = 500mA  |       | 1.1  |       | V     |
| Short Circuit Current | I <sub>sc</sub>       | T <sub>J</sub> = 25 °C , V <sub>I</sub> = -35V   |       | 140  |       | mA    |
| Peak Current          | I <sub>PK</sub>       | T <sub>J</sub> = 25 ℃                            |       | 650  |       | mA    |

Load and line regulation are specified at constant junction temperature. Change in V<sub>O</sub> due to heating effects must be taken into account separately. Pulse testing with low duty is used.



# KA79MO6 ELECTRICAL CHARACTERISTICS

(Refer to test circuit,  $0\% \le T_J \le 125\%$ ,  $I_0 = 350 \text{mA}$ ,  $V_1 = -11 \text{V}$ ,unless otherwise specified)

| Characteristic        | Symbol                | -                                            | Test condition                      | Min   | Тур   | Max    | Unit |
|-----------------------|-----------------------|----------------------------------------------|-------------------------------------|-------|-------|--------|------|
|                       |                       | T <sub>J</sub> = 25 ℃                        | T <sub>J</sub> = 25 ℃               |       | - 6.0 | - 6.25 |      |
| Output Voltage        | Vo                    | $I_0 = 5 \text{ to } 350$                    | )mA                                 |       |       |        | V    |
|                       |                       | $V_1 = -8.0 \text{ to } -$                   | -25V                                | - 5.7 | - 6.0 | - 6.3  |      |
| Line Regulation       | ⊿Vo                   | T.⊫ 25 °C                                    | $V_1 = -8 \text{ to } -25 \text{V}$ |       | 7.0   | 60     | mV   |
| Line Regulation       | ∠ v <sub>0</sub>      | 1 J= 23 C                                    | $V_1 = -9 \text{ to } -19V$         |       | 2.0   | 40     |      |
| Load Regulation       | ⊿Vo                   | T <sub>J</sub> = 25 ℃                        | I <sub>O</sub> = 5.0mA to 500mA     |       | 30    | 120    | mV   |
| Quiescent Current     | Ιq                    | T <sub>J</sub> = 25 ℃                        |                                     |       | 3     | 6      | mA   |
| Quiescent Current     | ⊿lo                   | $I_0 = 5 \text{ to } 350$                    | )mA                                 |       |       | 0.4    |      |
| Change                | ∠ IQ                  | $V_1 = -8V \text{ to } -$                    | 25V                                 |       |       | 0.4    | mA   |
| Output Voltage Drift  | ⊿ V <sub>0</sub> /⊿ T | $I_0 = 5mA$                                  |                                     |       | 0.4   |        | mV/℃ |
| Output Noise Voltage  | $V_N$                 | f = 10Hz to                                  | 100Khz,T <sub>A</sub> = 25 ℃        |       | 50    |        | μV   |
| Ripple Rejection      | RR                    | f = 120Hz,V                                  | I = -9 to -19V                      | 54    | 60    |        | dB   |
| Dropout Voltage       | $V_D$                 | I <sub>O</sub> = 500mA, T <sub>j</sub> = 25℃ |                                     |       | 1.1   |        | V    |
| Short Circuit Current | I <sub>sc</sub>       | V <sub>I</sub> = -35V, T <sub>j</sub> = 25℃  |                                     |       | 140   |        | mA   |
| Peak Current          | I <sub>PK</sub>       | T <sub>J</sub> = 25 ℃                        |                                     |       | 650   |        | mA   |

<sup>\*</sup>Load and line regulation are specified at constant junction temperature. Change in V<sub>0</sub> due to heating effects must be taken into account separately. Pulse testing with low duty is used.

# KA79MO8 ELECTRICAL CHARACTERISTICS

| Characteristic        | Symbol              |                                               | Test condition                                                     | Min   | Тур   | Max   | Unit |
|-----------------------|---------------------|-----------------------------------------------|--------------------------------------------------------------------|-------|-------|-------|------|
|                       |                     | T <sub>J</sub> = 25 ℃                         |                                                                    | - 7.7 | - 8.0 | - 8.3 |      |
| Output Voltage        | Vo                  | $I_0 = 5 \text{ to } 35$                      | 50mA                                                               |       |       |       | V    |
|                       |                     | $V_1 = -10.5 t$                               | o -25V                                                             | - 7.6 | - 8.0 | - 8.4 |      |
| Line Degulation       | ⊿Vo                 | T 25°                                         | $V_1 = -10.5 \text{ to } -25 \text{V}$                             |       | 7.0   | 80    |      |
| Line Regulation       | △ v <sub>0</sub>    | T <sub>J</sub> = 25℃                          | V <sub>I</sub> = -11 to -21V                                       |       | 2.0   | 50    | mV   |
| Load Regulation       | ⊿Vo                 | T <sub>J</sub> = 25 ℃                         | I <sub>O</sub> = 5.0mA to 500mA                                    |       | 30    | 160   | mV   |
| Quiescent Current     | lα                  | T <sub>J</sub> = 25 ℃                         |                                                                    |       | 3     | 6     | mA   |
| Quiescent Current     | ⊿lo                 | $I_0 = 5 \text{ to } 35$                      | $I_0 = 5 \text{ to } 350\text{mA}$<br>$V_1 = -8V \text{ to } -25V$ |       |       | 0.4   | A    |
| Change                | ⊿IQ                 | $V_I = -8V$ to                                |                                                                    |       |       | 0.4   | mA   |
| Output Voltage Drift  | ⊿V <sub>0</sub> /⊿T | $I_0 = 5mA$                                   |                                                                    |       | -0.6  |       | mV/℃ |
| Output Noise Voltage  | V <sub>N</sub>      | f = 10Hz to                                   | 100Khz,T <sub>A</sub> = 25 ℃                                       |       | 60    |       | μV   |
| Ripple Rejection      | RR                  | f = 120Hz,VI = -9 to -19V                     |                                                                    | 54    | 59    |       | dB   |
| Dropout Voltage       | $V_D$               | I <sub>O</sub> = 500mA, T <sub>J</sub> = 25 ℃ |                                                                    |       | 1.1   |       | V    |
| Short Circuit Current | I <sub>sc</sub>     | V <sub>I</sub> = -35V,                        | V <sub>I</sub> = -35V, T <sub>J</sub> = 25 °C                      |       | 140   |       | mA   |
| Peak Current          | I <sub>PK</sub>     | T₁= 25 °C                                     |                                                                    |       | 650   |       | mA   |

<sup>\*</sup>Load and line regulation are specified at constant junction temperature. Change in V<sub>O</sub> due to heating effects must be taken into account separately. Pulse testing with low duty is used.



# **KA79M12 ELECTRICAL CHARACTERISTICS**

(Refer to test circuit,  $0^{\circ} \le T_J \le 125^{\circ}$ ,  $I_O = 350$ mA,  $V_I = -19V$ ,unless otherwise specified)

| Characteristic        | Symbol                | -                                             | Test condition                           | Min   | Тур  | Max   | Unit |
|-----------------------|-----------------------|-----------------------------------------------|------------------------------------------|-------|------|-------|------|
|                       |                       | T <sub>J</sub> = 25 ℃                         |                                          | -11.5 | -12  | -12.5 |      |
| Output Voltage        | Vo                    | $I_0 = 5 \text{ to } 350$                     | 0mA                                      |       |      |       | V    |
|                       |                       | $V_1 = -14.5 \text{ to}$                      | o -30V                                   | -11.4 | -1.2 | -12.6 |      |
| Line Regulation       | ⊿Vo                   | T₁ = 25 °C                                    | $V_1 = -14.5 \text{ to } -30 \text{V}$   |       | 8.0  | 80    | m\/  |
| Line Regulation       | ∠ v <sub>0</sub>      | 1) = 20 0                                     | $V_1 = -15 \text{ to } -25 \text{V}$     |       | 3.0  | 50    | mV   |
| Load Regulation       | ⊿Vo                   | T <sub>J</sub> = 25 ℃                         | $I_0 = 5.0 \text{mA}$ to $500 \text{mA}$ |       | 30   | 240   | mV   |
| Quiescent Current     | lα                    | T <sub>J</sub> = 25 ℃                         | T <sub>J</sub> = 25 ℃                    |       | 3    | 6     | mA   |
| Quiescent Current     | ⊿lo                   | $I_0 = 5 \text{ to } 350$                     | I <sub>O</sub> = 5 to 350mA              |       |      | 0.4   |      |
| Change                | ⊿iq                   | V <sub>I</sub> = -14.5V                       | to -30V                                  |       |      | 0.4   | mA   |
| Output Voltage Drift  | ⊿ V <sub>0</sub> /⊿ T | $I_0 = 5mA$                                   |                                          |       | -0.8 |       | mV/℃ |
| Output Noise Voltage  | $V_N$                 | f = 10Hz to                                   | 100Khz,T <sub>A</sub> = 25 ℃             |       | 75   |       | μV   |
| Ripple Rejection      | RR                    | f = 120Hz,V <sub>I</sub> = -15 to -25V        |                                          | 54    | 60   |       | dB   |
| Dropout Voltage       | $V_D$                 | I <sub>O</sub> = 500mA, T <sub>J</sub> = 25 ℃ |                                          |       | 1.1  |       | V    |
| Short Circuit Current | I <sub>sc</sub>       | V <sub>I</sub> = -35V, T <sub>J</sub> = 25℃   |                                          |       | 140  |       | mA   |
| Peak Current          | I <sub>PK</sub>       | T <sub>J</sub> = 25 ℃                         |                                          |       | 650  |       | mA   |

<sup>\*</sup>Load and line regulation are specified at constant junction temperature. Change in V<sub>O</sub> due to heating effects must be taken into account separately. Pulse testing with low duty is used.

# **KA79M15 ELECTRICAL CHARACTERISTICS**

| Characteristic        | Symbol                | -                           | Test condition                         | Min     | Тур  | Max     | Unit |
|-----------------------|-----------------------|-----------------------------|----------------------------------------|---------|------|---------|------|
|                       |                       | T <sub>J</sub> = 25 ℃       |                                        | - 14.4  | - 15 | - 15.6  |      |
| Output Voltage        | Vo                    | $I_0 = 5 \text{ to } 350$   | 0mA                                    |         |      |         | V    |
|                       |                       | $V_1 = -17.5 \text{ to}$    | o -30V                                 | - 14.25 | - 15 | - 15.75 |      |
| Line Regulation       | ⊿Vo                   | T <sub>J</sub> = 25℃        | $V_1 = -17.5 \text{ to } -30 \text{V}$ |         | 9.0  | 80      | m\/  |
|                       | 2 VO                  | 1) = 23 C                   | $V_1 = -18 \text{ to } -28 \text{V}$   |         | 5.0  | 50      | mV   |
| Load Regulation       | ⊿Vo                   | T <sub>J</sub> = 25 ℃       | I <sub>O</sub> = 5.0mA to 500mA        |         | 30   | 240     | mV   |
| Quiescent Current     | lα                    | T <sub>J</sub> = 25 ℃       |                                        |         | 3    | 6       | mA   |
| Quiescent Current     | ⊿lo                   | I <sub>O</sub> = 5 to 350mA |                                        |         |      | 0.4     | A    |
| Change                | ⊿ iq                  | V <sub>I</sub> = -17.5V     | to -28V                                |         |      | 0.4     | mA   |
| Output Voltage Drift  | ⊿ V <sub>0</sub> /⊿ T | $I_0 = 5mA$                 |                                        |         | -1.0 |         | mV/℃ |
| Output Noise Voltage  | $V_N$                 | f = 10Hz to                 | 100Khz,T <sub>A</sub> = 25 ℃           |         | 90   |         | μV   |
| Ripple Rejection      | RR                    | f = 120Hz,V                 | ' <sub>I</sub> = -18.5 to -28.5V       | 54      | 59   |         | dB   |
| Dropout Voltage       | $V_D$                 | $I_0 = 500 \text{mA}$       | , T <sub>J</sub> = 25℃                 |         | 1.1  |         | V    |
| Short Circuit Current | I <sub>sc</sub>       | V <sub>I</sub> = -35V, T    | J = 25℃                                |         | 140  |         | mA   |
| Peak Current          | I <sub>PK</sub>       | T <sub>J</sub> = 25 ℃       |                                        |         | 650  |         | mA   |

<sup>\*</sup>Load and line regulation are specified at constant junction temperature. Change in V<sub>0</sub> due to heating effects must be taken into account separately. Pulse testing with low duty is used.



# **KA79M18 ELECTRICAL CHARACTERISTICS**

| Characteristic        | Symbol              |                           | Test condition                           | Min    | Тур  | Max    | Unit |
|-----------------------|---------------------|---------------------------|------------------------------------------|--------|------|--------|------|
|                       |                     | T <sub>J</sub> = 25 ℃     |                                          | - 17.3 | - 18 | - 18.7 |      |
| Output Voltage        | Vo                  | $I_0 = 5 \text{ to } 35$  | 0mA                                      |        |      |        | V    |
|                       |                     | $V_1 = -21 \text{ to } -$ | -33V                                     | - 17.1 | - 18 | - 18.9 |      |
| Line Degulation       | ⊿Vo                 | T <sub>J</sub> = 25 ℃     | $V_1 = -21 \text{ to } -33 \text{V}$     |        | 9.0  | 80     | mV   |
| Line Regulation       | ∠ v <sub>0</sub>    | 1j = 25 C                 | $V_1 = -24 \text{ to } -30 \text{V}$     |        | 5.0  | 80     | IIIV |
| Load Regulation       | ⊿Vo                 | T <sub>J</sub> = 25 ℃     | $I_0 = 5.0 \text{mA}$ to $500 \text{mA}$ |        | 30   | 360    | mV   |
| Quiescent Current     | lα                  | T <sub>J</sub> = 25 ℃     | T,j= 25 ℃                                |        | 3    | 6      | mA   |
| Quiescent Current     | ⊿lo                 | $I_0 = 5 \text{ to } 35$  | 0mA                                      |        |      | 0.4    | A    |
| Change                | ⊿ IQ                | V <sub>I</sub> = -21V to  | -33V                                     |        |      | 0.4    | mA   |
| Output Voltage Drift  | ⊿V <sub>0</sub> /⊿T | $I_0 = 5mA$               |                                          |        | -1.0 |        | mV/℃ |
| Output Noise Voltage  | V <sub>N</sub>      | f = 10Hz to               | 100Khz,T <sub>A</sub> = 25 ℃             |        | 110  |        | μV   |
| Ripple Rejection      | RR                  | f = 120Hz,\               | / <sub>I</sub> = -22 to -32V             | 54     | 59   |        | dB   |
| Dropout Voltage       | $V_D$               | $I_0 = 500 \text{mA}$     | , T <sub>J</sub> = 25 ℃                  |        | 1.1  |        | V    |
| Short Circuit Current | I <sub>sc</sub>     | V <sub>I</sub> = -35V, 7  | Γ <sub>J</sub> = <b>25</b> ℃             |        | 140  |        | mA   |
| Peak Current          | I <sub>PK</sub>     | T <sub>J</sub> = 25 ℃     |                                          |        | 650  |        | mA   |

<sup>\*</sup>Load and line regulation are specified at constant junction temperature. Change in V<sub>0</sub> due to heating effects must be taken into account separately. Pulse testing with low duty is used.

# KA79M24 ELECTRICAL CHARACTERISTICS

| Characteristic        | Symbol              |                                               | Test condition                       | Min    | Тур  | Max    | Unit |
|-----------------------|---------------------|-----------------------------------------------|--------------------------------------|--------|------|--------|------|
|                       |                     | T <sub>J</sub> = 25 ℃                         |                                      | - 23   | - 24 | - 25   |      |
| Output Voltage        | Vo                  | $I_0 = 5 \text{ to } 35$                      | i0mA                                 |        |      |        | V    |
|                       |                     | $V_1 = -27 \text{ to}$                        | -38V                                 | - 22.8 | - 24 | - 25.2 |      |
| Line Degulation       | $\Delta V_0$        | T₁ = 25 °C                                    | $V_1 = -27 \text{ to } -38 \text{V}$ |        | 9.0  | 80     | mV   |
| Line Regulation       | 2 V <sub>0</sub>    | 1 1 = 23 0                                    | $V_1 = -30 \text{ to } -36 \text{V}$ |        | 5.0  | 70     |      |
| Load Regulation       | ⊿Vo                 | T <sub>J</sub> = 25 ℃                         | I <sub>O</sub> = 5.0mA to 500mA      |        | 30   | 300    | mV   |
| Quiescent Current     | ΙQ                  | T <sub>J</sub> = 25 ℃                         |                                      |        | 3    | 6      | mA   |
| Quiescent Current     | 41                  | $I_0 = 5 \text{ to } 35$                      | i0mA                                 |        |      | 0.4    | 4    |
| Change                | ⊿la                 | $V_1 = -27V \text{ to}$                       | V <sub>I</sub> = -27V to -38V        |        |      | 0.4    | mA   |
| Output Voltage Drift  | ⊿V <sub>0</sub> /⊿T | $I_0 = 5mA$                                   |                                      |        | -1.0 |        | mV/℃ |
| Output Noise Voltage  | $V_N$               | f = 10Hz to                                   | 100Khz,T <sub>A</sub> = 25 ℃         |        | 180  |        | μV   |
| Ripple Rejection      | RR                  | f = 120Hz,\                                   | / <sub>I</sub> = -28 to -38V         | 54     | 58   |        | dB   |
| Dropout Voltage       | $V_D$               | I <sub>O</sub> = 500mA, T <sub>J</sub> = 25 ℃ |                                      |        | 1.1  |        | V    |
| Short Circuit Current | I <sub>sc</sub>     | V <sub>I</sub> = -35V,                        | Γ <sub>J</sub> = 25 ℃                |        | 140  |        | mA   |
| Peak Current          | I <sub>PK</sub>     | T <sub>J</sub> = 25 ℃                         |                                      |        | 650  |        | mA   |

<sup>\*</sup>Load and line regulation are specified at constant junction temperature. Change in V<sub>O</sub> due to heating effects must be taken into account separately. Pulse testing with low duty is used.



#### TYPICAL APPLICATIONS

Bypass capacitors are recommended for stable operation of the KA79MXX series of regulators over the input voltage and output current ranges. Output bypass capacitors will improve the transient response of the regulator.

The bypass capacitors,  $(2\mu F)$  on the input,  $1\mu F$  on the output) should be ceramic or solid tantalum which have good high frequency characteristics. If aluminum electrolithics are used, their values should be  $10\mu F$  or larger. The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals.

Fig. 1 Fixed Output Regulator

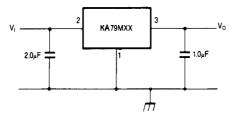
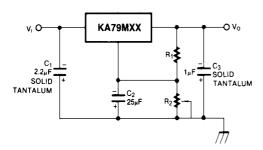
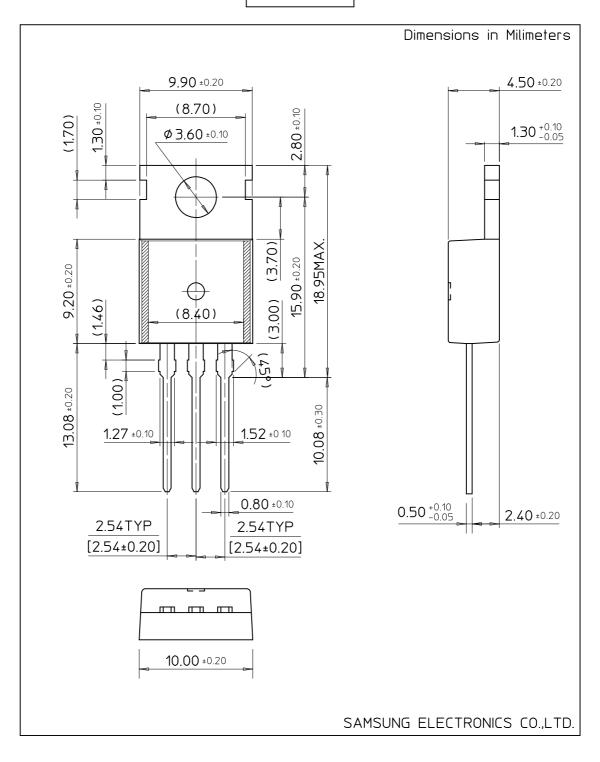




Fig. 2 Variable Output



#### Note

- 1. Required for stability. For value given, capacitor must be solid tantalum. 25 µF aluminum electrolytic may be substituted.
- 2.  $C_2$  improves transient response and ripple rejection. Do not increase beyond 50  $\mu F$  .


$$V_{\text{OUT}} = V_{\text{SET}} \ (\frac{R_1 + R_2}{R_1})$$

Select R<sub>2</sub> as follows

KA79M 05 :300  $\mathcal Q$  , KA79M12: 750  $\mathcal Q$  , KA79M15: 11  $\mathcal Q$ 



# TO-220

