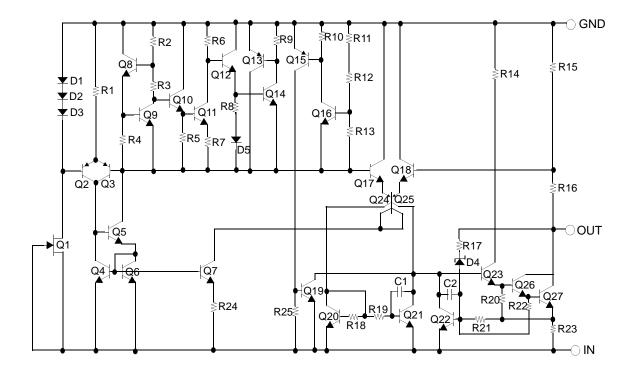

KA79MXX 3-Terminal 0.5A Negative Voltage Regulator


Features

- No External Components Required
- Output Current in Excess of 0.5A
- Internal Thermal Overload
- Internal Short Circuit Current Limiting
- Output Transistor Safe Area Compensation
- Output Voltages of -5V, -12V

Description

The KA79MXX series of 3-Terminal medium current negative voltage regulators are monolithic integrated circuits designed as fixed voltage regulators. These regulators employ internal current limiting, thermal shutdown and safe area compensation making them essentially indestructible.

Schematic Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage(for V _O = -5V to -12V)	VI	-35	V
Thermal Resistance Junction-Cases	R _θ JC	5	°C/W
Thermal Resistance Junction-Air	R _θ JA	65	°C/W
Operating Temperature Range	TOPR	0 ~ +125	°C
Storage Temperature Range	TSTG	-65 ~ +150	°C

Electrical Characteristics (KA79M05/KA79M05R)

(Refer to test circuit, $0^{\circ}C \leq T_J \leq +125^{\circ}C$, IO =350mA, VI =-10V,unless otherwise specified, CI =0.33\muF,CO=0.1 μ F)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		$T_{J} = +25^{\circ}C$ IO = 5mA to 350mA VI = -V7 to -25V		-4.8	-5	-5.2	V
Output Voltage	Vo			-4.75	-5	-5.25	
Line Regulation (Note1)		V∩ T.I =+25°C -	VI= -7V to -25V	-	7.0	50	mV
Line Regulation (Note1)	ΔνΟ		VI= -8V to -25V	-	2.0	30	
Load Regulation (Note1)	ΔVo	IO = 5mA to 500mA TJ = +25°C		-	30	100	mV
Quiescent Current	lq	TJ= +25°C		-	3.0	6.0	mA
		IO = 5mA to 350mA		-	-	0.4	mA
Quiescent Current Change	ΔlQ	IO = 200mA VI = -8V to -25V		-	-	0.4	
Output Voltage Drift	$\Delta Vo/\Delta T$	IO = 5mA		-	-0.2	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100kHz, T _A = +25°C		-	40	-	μV
Ripple Rejection	RR	f = 120Hz VJ = -8Vto -18V		54	60	-	dB
Dropout Voltage	VD	T _J =+25°C, I _O = 500mA		-	1.1	-	V
Short Circuit Current	ISC	T _J = +25°C, V _I = -35V		-	140	-	mA
Peak Current	lрк	TJ = +25°C		-	650	-	mA

Note:

1. Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA79M12R) (Continued)

(Refer to test circuit, $0^{\circ}C \le T_J \le +125^{\circ}C$, IO =350mA, VI = -19V, unless otherwise specified)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit			
		$T_J = +25^{\circ}C$ IO = 5mA to 350mA VI = -14.5V to -30V		$T_J = +25^{\circ}C$		-11.5	-12	-12.5		
Output Voltage	Vo			-11.4	-12	-12.6	V			
Line Regulation (Note1)		T1-125°C	VI = -14.5V to -30V	-	8.0	80	mV			
Line Regulation (Note1)	ΔVo	TJ =+25°C –	VI = -15V to -25V	-	3.0	50				
Load Regulation (Note1)	ΔVο	TJ = +25°C	IO = 5.0mA to 500mA	-	30	240	mV			
Quiescent Current	lQ	$T_J = +25^{\circ}C$		-	3	6	mA			
Quiescent Current Change		IO = 5mA to 350mA		-	-	0.4				
Quiescent Current Change	ΔlQ	VI = -14.5V to -30V		VI = -14.5V to -30V	VI = -14.5V to -30V	VI = -14.5V to -30V	-	-	0.4	mA
Output Voltage Drift	ΔVΟ/ΔΤ	IO = 5mA		-	-0.8	-	mV/°C			
Output Noise Voltage	VN	f = 10Hz to 100kHz, TA = +25°C		-	75	-	μV			
Ripple Rejection	RR	f = 120Hz,VI = -15V to -25V		54	60	-	dB			
Dropout Voltage	VD	IO = 500mA, TJ = +25°C		-	1.1	-	V			
Short Circuit Current	ISC	VI = -35V, TJ = +25°C		-	140	-	mA			
Peak Current	Iрк	T _J = +25°C		-	650	-	mA			

Note:

1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

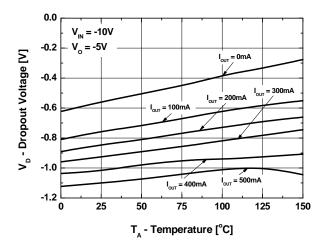
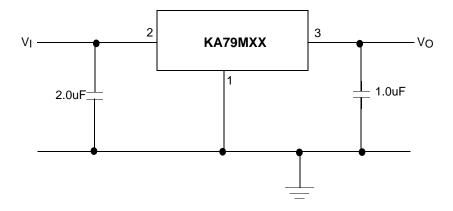
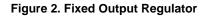




Figure 1. Dropout Voltage

Typical Applications

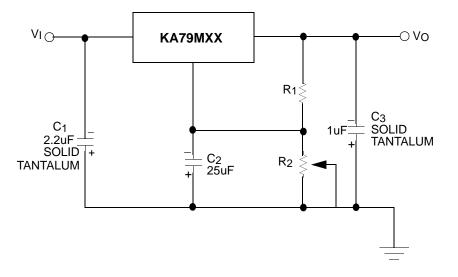
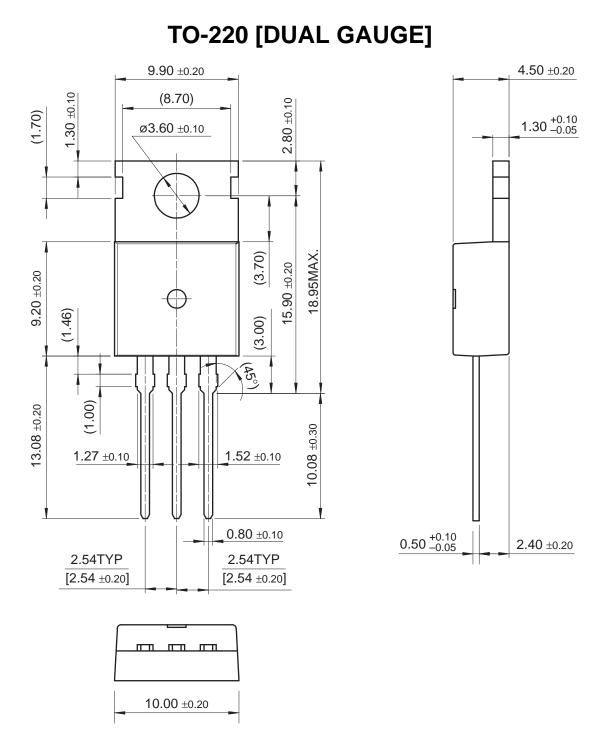


Figure 3. Variable Output

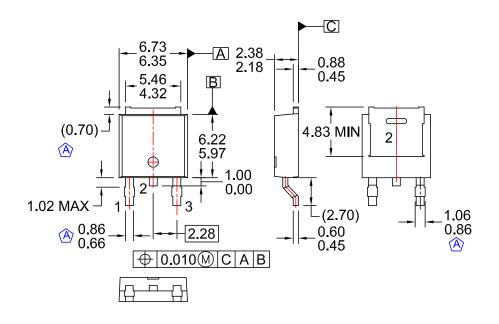

Note:

- 1. Required for stability. For value given, capacitor must be solid tantalum. $25\mu F$ aluminum electrolytic may be substituted.
- 2. C₂ improves transient response and ripple rejection. Do not increase beyond 50μ F.

Mechanical Dimensions

Package

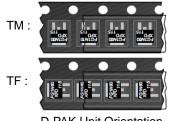
Dimensions in millimeters



Mechanical Dimensions (Continued)

Package

Dimensions in millimeters


NOTES: UNLESS OTHERWISE SPECIFIED CONFORMS TO JEDEC TO-252 VARIATION AB EXCEPT WHERE NOTED

- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DRAWING CONFORMS TO ASME Y14.5M-1994
- D) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- E) FORMERLY NAMED BD1733
- F) DRAWING FILE NAME: MKT-TO252D03REV1

Ordering Information

Product Number	Package	Operating Temperature
KA79M05TU	TO-220 (Dual Gauge)	
KA79M05RTM		
KA79M05RTF	D-PAK	0 ~ +125°C
KA79M12RTM	D-PAR	
KA79M12RTF		

* Refer to below figure for TM / TF suffix of DPAK packing option

D-PAK Unit Orientation

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com