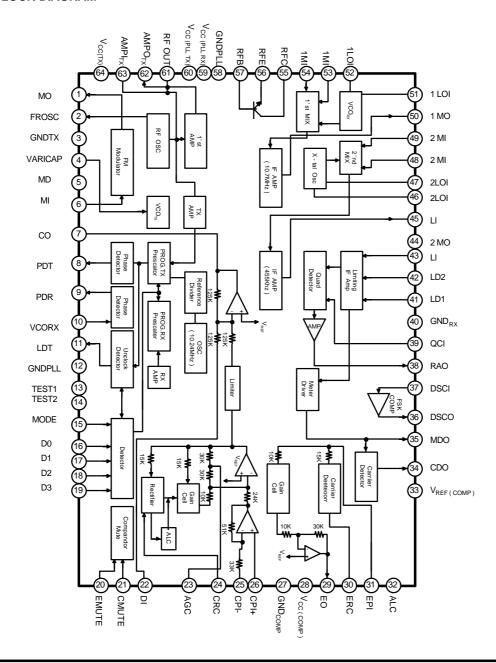

INTRODUCTION

KA8510 is a monolithic circuit which can be used for high performance 46/49MHz MCA type Cordless Phone System. It is a transceiver IC for FM/FSK transmitting/receiving system, and is a complete one chip FM/FSK transceiver IC of 46/49MHz which includes transmitting and receiving functions for FM/FSK, a COMPANDOR to remove external noise, and PLL (Phase Locked Loop) of channel selection function which blocks surrounding frequency interference.

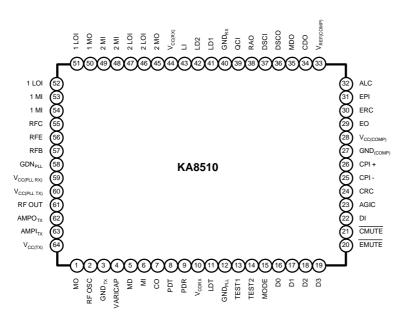
It has wide range of applications to FM/FSK transmitting/receiving of VHF bandwidth, including the cordless phone, and narrow band voice and data transmitting/receiving system. To make applications easy and simple, peripheral parts were minimized.

ORDERING INFORMATION


Device	Package	Operating Temperature
KA8510Q	64-QFP-1420C	-25°C ~ + 75°C

FEATURES

- Operating voltage range: 2 ~ 6V
- Typical supply current: 20mA at 3V
- Built-in dual conversion receiver, transmitter, compandor and PLL
- · Compandor part
 - Easy gain control to use external component
 - Included ALC (automatic level control) circuit
 - Mute logic, Data amp
- FM Transmitter part
 - Included variable capacitance
 - Adjustable power amp gain
- FM Receiver part
 - Complete dual conversion circuit with RF amplifier
 - Excellent input sensitivity (0.7μVrms at 12dB SINAD)
- PLL part
 - 10/15 channels selectable (both transmitter/receiver)
 - Include oscillation circuit with external crystal (10.24MHz)
 - Unlock detector (Phase difference more than $6.25\mu s$)



BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

Pin No	Symbol	Description
		It Generates carrier signal and modulates frequency.
1	MO	The audio signal enters the MI terminal and causes the internal reactance
		to vary, which changes the frequency generated from the coil tank, resul-
		ting in frequency modulation.
		Input terminal of RF carrier signal.
2	RF OSC	By varying the capacitor value, which is connected between MO terminals,
2	KF USC	the amount of frequency modulation (Hz/mV) can be adjusted.
		Larger capacitor value increases the amount of modulation.
3	GND_TX	Ground.
3	GINDTX	Ground of a transmitter part.
		Variable capacitor included in the chip. Since the RF oscillation frequency
4	VARICAP	changes according as the detected pulse error at PLL influences the variable
		capacitor, it becomes useful when a channel is being changed.
5	MD	AC bypass terminal of FM modulator. A capacitor is connected between
5	IVID	this terminal and GND.
		Input terminal of RF modulator. It inputs an audio signal through the comp-
6	MI	ressor of compandor to modulate FM.
	1411	Variation of RF generated frequency per voltage (mV) at this terminal beco-
		mes the sensitivity of frequency modulation.

Pin No	Symbol	Description
7	CO	It is a COMPRESSOR output terminal of COMPANDOR, and is connected
·		to the modulation input terminal of transmitter.
		It is a phase detector output terminal of transmitter at PLL.
8	PDT	If $f_{TX} > f_{REF}$ or f_{TX} is leading -> output is negative pulse.
Ü	1.5.	If $f_{TX} < f_{REF}$ or f_{TX} is lagging -> output is positive pulse.
		If $f_{TX} = f_{REF}$ and the same phase -> output is high impedance.
		It is a phase detector output terminal of transmitter at PLL.
9	PDR	If $f_{RX} > f_{REF}$ or f_{RX} is leading -> output is negative pulse.
9	1 DIX	If $f_{RX} < f_{REF}$ or f_{RX} is lagging -> output is positive pulse.
		If $f_{RX} = f_{REF}$ and the same phase -> output is high impedance.
		This is a variable capacitor terminal, and is included in the chip. It is used
10	VCO _{RX}	as an input terminal where 1'st local oscillation frequency is oscillates.
10	VCORX	The internal variable capacitor has the value of 10~25pF according
		to the applied voltage (0.7~V _{CC})
44	LDT	It is an output terminal of lock detector of transmitter stage at PLL.
11	LDT	Output is low if PLL is in lock state, and is high if PLL is in unlock state.
40	CND	Ground
12	GND _{PLL}	It is used as ground of logic section at PLL.
40	TEOT4	This terminal tests operation of PLL. It is operated together with test2.
13	TEST1	When it is not in use, a resistor is connected between V_{CC} and this terminal.
		It is an input terminal for PLL test. When test is set to high, outputs of Rx-
14	TEST2	programmable divider and Tx-programmable divider can be tested at LDT
		terminal.
		It is PLL's mode selection terminal. This terminal is set to high if it is used
15	MODE	for the base set of a cordless phone, and is set to low if it is used for the
		hand set of a cordless phone.
16	D0	
17	D1	It is a decode input terminal for PLL's channel selection.
18	D2	Four bit binary code of D0(LSB) ~ D3(MSB) are given by MICOM. These
19	D3	inputs have internal pull down devices
		It is EXPANDER MUTE terminal of COMPANDOR, and is the final
		MUTE block of an EXPANDER located next to the receiver terminal. It blo-
20	E MUTE	cks the data signal of MICOM being transmitted to an user, and is connec-
		ted to the Rx MUTE terminal of MICOM.
		Expanding is executed if it is low.

Pin No	Symbol	Description
		It is a COMPRESSOR MUTE terminal of a COMPANDOR. MUTE block
		is inserted before the data input terminal of COMPRESSOR to avoid dupli-
		cation of data transmission from MICOM (between the base and hand set)
21	C MUTE	with the voice signal.
		It is connected to the TX MUTE terminal of MICOM.
		Compressing is executed if this terminal is high, and COMPRESSOR
		MUTE is executed if it is low.
		It is a data input terminal of COMPRESSOR, and is used to transmit data of
22	DI	handset MICOM to baseset, or data of baseset MICOM to handset.
		This terminal is connected to the data output terminal of MICOM.
		This terminal is used for bypassing an AC element at the feedback loop
23	AGIC	which comes from the SUM AMP block of COMPRESSOR. A capacitor
		should be connected between this terminal and GND.
		This terminal is used for converting waveform from the full wave rectifier
24	CRC	to DC element at the rectifier block of COMPRESSOR.
		(RC = 22msec)
0.5	ODI	It is a PRE AMP inverting input terminal of COMPRESSOR, and is used
25	CPI -	for adjusting the negative feedback loop gain. (in application, gain is 5)
00	CDI :	It is a PRE AMP non-iverting input terminal of COMPRESSOR, and is used
26	CPI +	as an input terminal for voice signal.
	ON ID	Ground
27	GND _{COMP}	Ground of COMPANDOR
	.,	Supply voltage
28	$V_{CC(COMP)}$	Power supply terminal of COMPANDOR
		It is an output terminal of EXPANDER, which a regenerated voice sig-
29	EO	nal comes out.
		This terminal is used for inverting waveform from the full wave rectifier to
30	ERC	DC element at the rectifier block of EXPANDER.
		(RC = 22 msec)
		It is a SUM AMP input terminal of EXPANDER. After the demodulated signal
31	EPI	passed through the 2'nd order low pass filter, the voice signal enters this
		terminal.

Pin No	Symbol	Description
		It is a input reference voltage terminal of ALC (Automatic Level Control). ALC circuit may be turned off according to the ALC reference voltage, or magnitude of output voltage may be limited if it is higher than a certain
32	ALC	level. It is used for adjusting THD of output voltage of COMPRESSOR to less than 3% or to limit the frequency deviation of TX in case the input is higher
		than a certain level.
33	V _{REF(COMP)}	It is a voltage reference (V _{REF} = 1V) used for supplying a constant voltage to the COMPRESSOR and EXPANDER of COMPANDOR.
34	CDO	It is an output terminal of a carrier detector, and outputs the contents of a buffer of a Meter Driver which is turned on/off according to a certain signal level detected by the Meter driver. Since this terminal is an open collector output type, it requires a pull-up resistor, and is connected to RSSI terminal of MICOM.
35	MDO	It is an output terminal of a Meter Driver. (RSSI: Received Signal Strength Indicator) Amplitude of RF input signal for useful frequency is detected by a Meter Driver circuit. The Meter Driver circuit has perfect linear characteristic of 60dB range for input signal level. (0.1µA/dB)
36	DSCO	It is an output terminal of Data Slicing Comparator. It separates FSK (Frequency-Shift Keying) Serial data and executes data shaping and limiting.
37	DSCI	It is an input terminal of Data Slicing Comparator, and is a non-inverting type with negative input terminal biased to 1/2 V _{CC} .
38	RAO	It is a recovered audio output terminal. Voice signal which is detected by Quadrature Detector is amplified and then is output via this terminal.
39	QCI	It is a Quadrature Coil input terminal. The 455KHz Oscillator circuit is comprised of $L_P = 680\mu H$, $C_P = 180pF$, LC Tank circuit. Voice signal is detected by mixture of 455KHz (by phase difference) with is converted from second Mixer.
40	GND _{RX}	Ground Ground for receiver

Pin No	Symbol	Description
41	LD1	It is a Limiter input and Decoupling terminal, and is used for removing am-
		plitude modulation element caused by fading or noise of FM signal.
42	LD2	Limiting IF amplifier amplifies and limits second intermediate frequency
		455KHz signal.
43	LI	The input impedance of Limiting IF amplifier is designed to 1.5Kohm.
		While FM wave is transmitted with constant magnitude, its magnitude is
		slightly modulated due to the reflection from obstacles, fading phenome-
		non, noise wave, etc., and mixed with AM wave element before it enters
		the receiver's antenna.
		The Limiter makes uniform amplitude by removing these AM wave ele-
		ment.
44	V	Supply Voltage
44	V _{CC(RX)}	This terminal is used for supplying power to a receiver.
		It is an output terminal of second mixer. Second intermediate frequency
45	2 MO	455KHz, generated by mixing first intermediate frequency (10.7MHz) and
		second local oscillator, is output.
40	2 LOI	It is an input terminal of second local oscillator. It generates second local
46 47	2 LOI 2 LOI	oscillator frequency to convert output from first Mixer (10.7MHz) to second
47	2 LOI	intermediate frequency. It is an oscillator with crystal of 10.24MHz,10.245
		MHz.
48	2 MI	It is an input terminal of second Mixer. Output from first Mixer is entered
49	2 MI	to second Mixer input terminal via 10.7MHz ceramic filter. Second Mixer
49	2 1011	converts frequency to second intermediate frequency (455KHz : AM IF).
		It is an output terminal of first Mixer. Signal from the first Mixer and freque-
		ncy of first local oscillator are mixed and become first intermediate freque-
50	1 MO	ncy, which is then output through this terminal.
		The output terminal is made of emitter follower with an output impedance
		of 330ohm to match 330ohm input/output impedance of 10.7MHz ceramic
		filter.
51	1 LOI	It is an input terminal of first local oscillator.
		The local oscillator is a voltage controlled oscillator. Local oscillation fre-
52	1 LOI	quency and received frequency are mixed at the first Mixer and then are
		converted to first intermediate frequency of 10.7MHz.

Pin No	Symbol	Description
53	1 MI	It is an input terminal of first Mixer. This Mixer is made of double balanced
54	1 MI	multiplier. Received signal (46/49 MHz) amplified at RF AMP is input to
		this terminal.
		It is an collector terminal of RF amplifier transistor.
55	RFC	Amount of amplification can be selected using the resistor load at RF amp-
		lifier collector.
		It is an emitter terminal of RF amplifier transistor.
		The gain of RF AMP can be adjusted using the resistance of emitter dege-
56	RFE	neration.
		I _E = 1.5mA when emitter of RF AMP is connected to the ground, and vol-
		tage gain on 1 Kohm of collector load is Av = 20dB
		It is a base terminal of RF amplifier transistor.
		Base of TR is biased internally to about 0.8V from the common-emitter am-
57	RFB	plifier design.
		This RF AMP amplifies subtle signal received by the antenna to proper
		size for conversion into first intermediate frequency (10.7MHz).
58	GND	Ground
30	GND	Ground for analog at PLL.
59	V _{CC(PLL RX)}	Supply Voltage
39	V CC(PLL RX)	This terminal supplies power from PLL to Rx ECL area.
60	V _{CC(PLL TX)}	Supply Voltage
00	V CC(PLL TX)	This terminal supplies power from PLL to Tx ECL area.
		This terminal outputs transmission frequency (46/49MHz) from RF oscilla-
61	RF OUT	tor. Tx spurious characterestics can be adjusted by connection a capacitor
		between pin 63 and this terminal.
		This is an output terminal of a POWER AMP, and is open collector type.
62	AMPO TX	It provides 2 point oscillation and amplification to narrow the bandwidth
		of transmitter output.
		This terminal controls the gain of a POWER AMP, and is open base type.
63	AMPI TX	The AMP gain can be selected by connecting a variable resistor between
		V _{CC} and this terminal.
		Supply Voltage
64	V _{CC} (TX)	It is a V _{CC} of transmitter. It permits voltage supply to use seperately if the tran-
		smission output is desired.

ABSOLUTE MAXIMUM RATINGS (Ta = 25 C)

Characteristics	Symbol	Value	Unit
Maximum Supply Voltage	Vcc	7	V
Power Dissipation	P _D	600	mW
Junction Temperature	T _J	+ 125	°C
Operation Temperature	T _{OPR}	-25 ~ + 75	°C
Storage Temperature	T _{STG}	-65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS

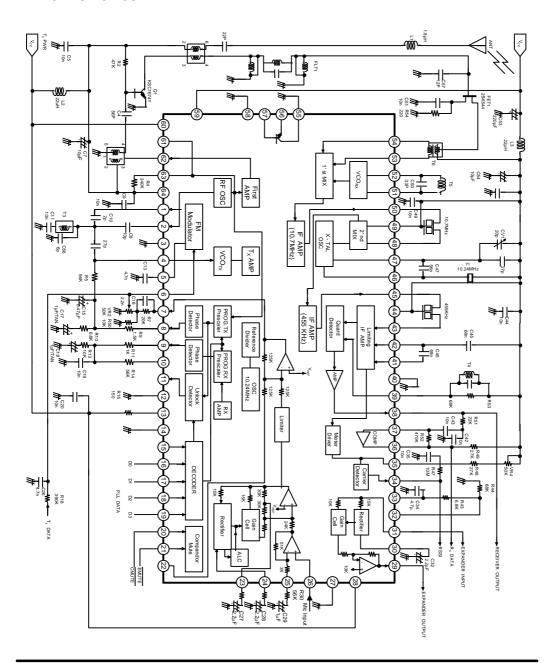
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit	
Operating Voltage	V _{CC}	-	2.0	-	6.0	V	
Total Operating Current	Icc	-	-	20	-	mA	
RECEIVER (V_{CC} = 5V, f_C = 49.7MHz, f_{DEV} = \pm 3KHz, f_{MOD} = 1KHz, Ta = 25°C, Unless otherwise specified)							
Operating Current 1	I _{CC} 1	RFin = 1mVrms $V_{CC} = 3V$	-	3.5	6.0	mA	
Operating Current 2	I _{CC} 2	V _{CC} = 5V, RFin = 1mVrms	-	4.5	7.0	mA	
Input for -3dB Sensitivity	V_{LIM}	$RFin = 1mVrms \rightarrow 0dB$ $RFin = 1mVrms \rightarrow -3dB$	-	0.7	2.0	μVrms	
Input for 20dB Sensitivity	V _{I(SEN)}	Modulation Input None Modulation Input	-	0.7	2.0	μVrms	
S/N Ratio	S/N	Modulation Input None Modulation Input	48	55	1	dB	
Recoverd Audio Output	$V_{O(RA)}$	$RFin = 1mVrms$ $f_{mod} = 1KHz$ $f_{dev} = \pm 3KHz$	210	350	490	mVrms	
Noise Output Level	V _{NO}	RFin = None Input	-	250	400	mVrms	
Recoverd Audio Output Voltage Drop	V _{O(RAD)}	$V_{CC} = 5V \rightarrow 2V$ RFin = 1mVrms	-8	-1.5	-	dB	
Direct Output Voltage	V _{O(DET)}	RFin = 1mVrms	1.6	2.3	3.0	V_{dc}	
Carrier Detector Throshold	V _{TH(DET)}	RFin = None Input $R_{L(34)} = 10K\Omega$	0.49	0.60	0.73	V_{dc}	

ELECTRICAL CHARACTERISTICS (continued)

Characteristics	Symbol	Test Conditions	Min	Тур	Max	Unit
	RECEIVER (Ta	a = 25°C, Unless otherwise specifie	ed)			
Comparator Threshold Voltage Difference	$\Delta V_{\text{TH (COMP)}}$	$V_{I (COMP)} = 1 \text{KHz}, 150 \text{mV}_{P-P}$ $R_{L (37)} = 180 \text{K}\Omega$	70	110	150	mW
Comparator Output Voltage 1	V _{OH (COMP)}	"	3.8	4.25	-	V_{dc}
Comparator Output Voltage 2	V _{OL (COMP)}	"	-	0.25	0.5	V_{dc}
Second Mixer Coversion Voltage Gain	Δ G _{V (2M)}	$V_{i (54)} = 1 \text{mVrms}$ $R_{L (50)} = 330 \Omega$	14	18	22	dB
First Mixer Coversion Voltage Gain	Δ G _{V (1M)}	$V_{I(48)}=1 mV rms$ $R_{L(45)}=330~K\Omega$	17	21	26	dB
AM Rejection Ratio	AMR	RFin = 1mVrms AM MOD = 30%	25	35	-	dB
Detector Output Distortion	THD DET	RFin = 1mVrms	-	2.0	3.0	%
Detector Output Resistance	R _{O (DET)}	RFin = 1mVrms	-	1.4	2.0	ΚΩ
Detector Output DC Voltage Change Ratio	$\Delta V_{O(DET)}$	RFin = 1mVrms	-	0.12	0.2	V/KHz
Meter Drive Slope	MDS	-	70	100	135	nA/dB
First Mixer Input Resistance	R _{I (1M)}	f _C = 50MHz	500	690	-	Ω
First Mixer Input Capacitance	C _{I (1M)}	f _C = 50MHz	-	7.2	10	pF
Limitter Input Sensitivity	V _{I (LIM)}	f _C = 455MHz, 20dB S/N	-	100	250	μVrms
Second Mixer Input Sensitivity	S _{V (2M)}	f _C = 10.7MHz, 20dB S/N	-	10	25	μVrms
First Mixer 3rd Order Intercept	3RD	-	-	-2.2	-	μVrms
RF Amp DC Current Gain	G _{I (AMP)}	V _{CC} = 5Vdc	1.0	1.5	2.5	μVrms

ELECTRICAL CHARACTERISTICS (continued)

Characteristics	Symbol	Test Conditions	Min	Тур	Max	Unit	
TRANSMITTER ($V_{CC} = 3V$, $f_C = 49.86$ MHz, $T_a = 25$ °C, Unless otherwise specified)							
Operating Current	Icc	$V_{CC} = 3V$	1.0	1.5	2.0	mA	
Modulation Senstitivity	S _{MOD}	V _{in} = 0.9 ~ 1.1V	100	150	200	Hz/mV	
Maximum Deviation	$\Delta f_{(MAX)}$	$V_{in} = 0 \sim 2.0V$	± 40	± 70	± 120	KHz	
First Amp bias Voltage	V _{BIAS}	V _{in} = Open	0.5	0.7	0.9	V	
First Amp RF Out Voltage	V_{RF}	f _O = 49.860MHz	100	300	-	mVrms	
Variable Capacitance	V _{CAP}	Zero Bias	-	30	-	pF	
COMPRI	ESSOR (V _{CC} =3V,	f=1MHz, Ta = 25°C, Unless otherwi	se specifi	ed)			
Operating Current	Icc	No signal	-	3.6	6.0	mA	
Reference Voltage	V_{REF}	No signal	0.9	1.0	1.1	V _{dc}	
Standard Output Voltage	V _{O(COMP)}	$V_{inc} = 13 \text{mVrms} \rightarrow 0 \text{dB}$	240	300	340	mVrms	
Compressor Gain Difference	Δ G _{V1(COMP)}	V _{inc} = -20dB	-0.5	0	+0.5	dB	
Compressor Cam Emerence	Δ G _{V2(COMP)}	V _{inc} = -40dB	-1.0	0	+1.0	dB	
Compressor Output Distortion	THD _{COMP}	V _{inc} = 0dB	-	0.5	1.0	%	
Mute Attenuation Ratio	ATT _{MUTE}	V _{inc} = 0dB, CMUTE = GND	60	80	-	dB	
Compressor Limitting Voltage	V _{LIM(COMP)}	V _{inc} = Variable	1.15	1.35	1.50	V _{P-P}	
ALC	V_{ALC}	-	280	325	360	mVrms	
EXPAN	DER (V _{CC} = 3V, f =	= 1MHz, Ta = 25°C, Unless otherwis	e specifie	ed)			
Standard Output Voltage	V _{O(EXP)}	$V_{ine} = 180 mVrms \rightarrow 0 dB$	110	130	160	mVrms	
	$\Delta G_{V1(EXP)}$	$V_{in} = -10dB$	-0.5	0	+0.5	dB	
Expander Gain Difference	Δ G _{V2(EXP)}	$V_{in} = -20dB$	-1.0	0	+0.1	dB	
	Δ G _{V3(EXP)}	$V_{in} = -30dB$	-1.5	0	+1.5	dB	
Expander Output Distortion	THD _{EXP}	$V_{in} = 0dB$	-	0.5	1.5	%	
Mute Attenuation Ratio	ATT _{MUTE}	V _{in} = 0dB	60	85	-	dB	
Expander Maximum Output Voltage	V _{OEXP(MAX)}	V _{ine} = Variable THD = 10%	500	600	-	mVrms	



ELECTRICAL CHARACTERISTICS (continued)

PLL (V _{CC} =	3V, Ta = 25°C, Unless otherwise specified)								
Η			PLL (V _{CC} = 3V, Ta = 25°C, Unless otherwise specified)						
	$V_{in} = V_{CC} - 0.5V$	30	50	80	μА				
I _{IL}	$V_{in} = 0V$	-	0	1	μΑ				
V_{IH}	$I_{in} = 20\mu A$	1.2	1.5	1.7	.,				
V _{IL}	$I_{in} = 3\mu A$	0	0.3	0.5	V				
V _{OH 1}	PDT, PDR : I _O = 1mA(sourcing)	2.3	2.7	3.0	V				
V _{OL 1}	PDT, PDR : I _O = 1mA(Sinking)	0	0.3	0.5	v				
V _{OH 2}	LDT : I _O = 1mA(sourcing)	2.3	2.7	3.0	V				
V _{OL 2}	LDT : $I_0 = 1mA(Sinking)$	0	0.3	0.5	v				
f _{TX}	$f_{in(TX)} = 42MHz$	-1	Fout	+1	Hz				
f_{RX}	$f_{in(RX)} = 42MHz$	-1	Fout	+1	Hz				
	V_{IH} V_{IL} $V_{OH 1}$ $V_{OL 1}$ $V_{OH 2}$ $V_{OL 2}$	$V_{IH} \qquad I_{In} = 20 \mu A$ $V_{IL} \qquad I_{In} = 3 \mu A$ $V_{OH 1} \qquad PDT, PDR : I_{O} = 1 mA(sourcing)$ $V_{OL 1} \qquad PDT, PDR : I_{O} = 1 mA(Sinking)$ $V_{OH 2} \qquad LDT : I_{O} = 1 mA(sourcing)$ $V_{OL 2} \qquad LDT : I_{O} = 1 mA(Sinking)$ $f_{TX} \qquad f_{In(TX)} = 42 MHz$ $300 mV_{P-P}$ $f_{In(RX)} = 42 MHz$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

APPLICATION CIRCUIT

