INTRODUCTION

The KC73129UC is an interline transfer CCD area image sensor developed for PAL 1/3inch optical format video cameras, surveillance cameras, object detectors and image pattern recognizers. High sensitivity is achieved through the adoption of Ye, Cy, Mg and G complementary color mosaic filters, on-chip micro lenses

This chip features a field integration read out system and an electronic shutter with variable charge storage time.

FEATURES

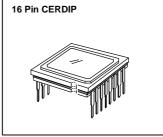
- · High Sensitivity
- · Optical Size 1/3inch Format
- · Ye, Cy, Mg, G On-chip Complementary · Color Mosaic Filter
- ORDERING INFORMATION

Device	Package	Operating Temperature
KC73129UC	16pin CERDIP	-10°C ~ + 50°C

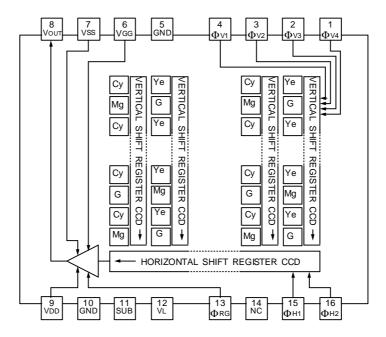
- · Variable Speed Electronic Shutter
- · Low Dark Current
- · Horizontal Register 5V Drive
- · 16pin Ceramic DIP Package
- · Field Integration Read Out System

STRUCTURE

- · Number of total pixels
- · Number of effective pixels
- · Chip size
- : 9.80µm(H) × 6.30µm(V)


: 537 (H) × 597 (V)

- · Unit pixel size
- · Optical blacks & dummies


: 500 (H) × 582 (V) : 6.00mm(H) × 4.95mm(V)

: Refer from below figure 500 30 Dummy Pixels Effective Optical Black Pixels Imaging V-CCD Area 582 Effective Pixels OUTPUT H-CCD

BLOCK DIAGRAM

PIN DESCRIPTION

Pin	Symbol	Description	Pin	Symbol	Description
1	Φ_{V4}	Vertical CCD Transfer Clock 4	9	V _{DD}	Output Stage Drain Bias
2	Φ_{V3}	Vertical CCD Transfer Clock 3	10	GND	Ground
3	Φ_{V2}	Vertical CCD Transfer Clock 2	11	SUB	Substrate Bias
4	Φ_{V1}	Vertical CCD Transfer Clock 1	12	VL	Protection Circuit Bias
5	GND	Ground	13	Φ_{RG}	Charge Reset Clock
6	V_{GG}	Output Stage Gate Bias	14	NC	No Connection
7	V _{SS}	Output Stage Source Bias	15	Φ_{H1}	Horizontal CCD Transfer Clock 1
8	V _{OUT}	Signal Output	16	Φ_{H2}	Horizontal CCD Transfer Clock 2

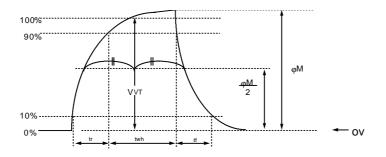
ABSOLUTE MAXIMUM RATINGS $^{^{\star}(1)}$

Characteristics	Symbols	Min.	Max.	Unit
Substrate Voltage	SUB-GND	-0.3	55	V
Supply Voltage	V _{DD} ,V _{OUT} ,V _{SS} -GND	-0.3	17	V
Vertical Clock Input Voltage	$\Phi_{V1}, \Phi_{V2}, \Phi_{V3}, \Phi_{V4}$ -GND	-15	30	V
	$\Phi_{V1}, \Phi_{V2}, \Phi_{V3}, \Phi_{V4}$ -VL	-0.3	30	V
Horizontal Clock	Φ_{H1}, Φ_{H2} - GND	-0.3	20	V
Voltage Difference between Vertical	Φ_{V1} , Φ_{V2} , Φ_{V3} , Φ_{V4}	-30	30	V
and Horizontal Clock Input Pins	Φ_{H1}, Φ_{H2}	-20	20	V
	Φ_{H1} , Φ_{H2} - Φ_{V4}	-30	30	V
Output Clock	Φ_{RG}, V_{GG} - GND	-0.3	20	V
Protection Circuit Bias Voltage	V _L - SUB	-65	0.3	V
Operating Temperature	T _{OPR}	-10	50	°C
Storage Temperature	T _{STG}	-30	80	°C

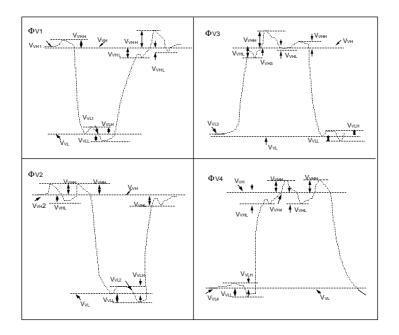
* (1) The device can be destroyed, If the applied voltage or temperature is higher than the absolute maximum rating voltage or temperature.

DC CONDITIONS

Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Output Stage Drain Bias	V _{DD}	14.55	15.0	15.45	V	
Output Stage Gate Voltage	V _{GG}	1.75	2.0	2.25	V	
Output Stage Source Voltage	V _{SS}	Groun	d through	680Ω	V	±5%
Substrate Voltage Adjustment Range	V _{SUB}	8.0		19.0	V	
Fluctuation Voltage Range after Substrate Voltage Adjusted	DV _{SUB}	-3		3	%	
Reset Gate Voltage Adjustment Range	V _{RGL}	1.0	2.0	4.0	V	
Fluctuation Voltage Range after Reset Gate Voltage Adjusted	DV _{RGL}	-3		3	%	
Protection Circuit Bias Voltage	VL	V _{VL} voltage of the vertical clock		al clock way	veform	
Output Stage Drain Current	I _{DD}		2.5		mA	

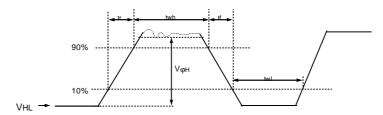

CLOCK VOLTAGE CONDITIONS

ltem	Symbol	Min.	Тур.	Max.	Unit	Remark
Read-out Clock Voltage	V _{VT}	14.55	15.0	15.45	V	High level
Vertical Transfer	$V_{VH1} \sim V_{VH4}$	-0.05	0.0	0.05	V	$V_{VH=}(V_{VH1+}V_{VH2})/2$
Clock Voltage	$V_{VL1} \sim V_{VL4}$	-9.0	-8.5	-8.0	V	$V_{VL=}(V_{VL3+}V_{VL4})/2$
Horizontal Transfer	$V_{\Phi H}$	4.75	5.0	5.25	V	High
Clock Voltage	V _{HL}	-0.05	0.0	0.05	V	Low
Charge Reset	$V_{\Phi RG}$	4.75	5.0	5.25	V	High
Clock Voltage	V _{RGLH} -V _{RGLL}			0.8	V	Low
Substrate Clock Voltage	V _{ΦSUB}	20.0	23.5	25.0	V	Shutter

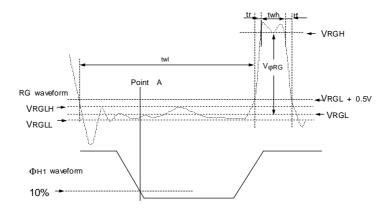


DRIVE CLOCK WAVEFORM CONDITIONS

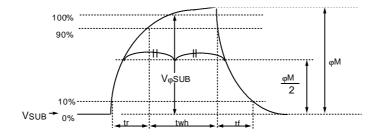
(1) Read out clock waveform



(2) Vertical transfer clock waveform

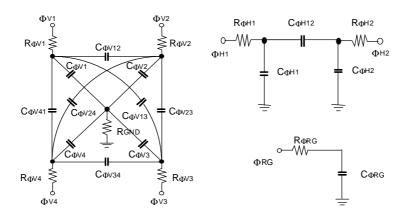


(3) Horizontal transfer clock waveform diagram


(4) Reset gate clock waveform diagram

VRGLH is the maximum value and VRGLL the minimum value of the coupling waveform in the period from Point A in the diagram about to RG rise

 $V_{RGL}=(V_{RGLH}+V_{RGLL})/2$, $V_{\phi RG}=V_{RGH}-V_{RGL}$


(5) Substrate clock waveform

CLOCK EQUIVALENT CIRCUIT CONSTANT

Item	Symbol	Тур.	Unit	Remark
Capacitance between Vertical Transfer Clock and GND	$C_{\Phi V1}, C_{\Phi V3}$	1,300	pF	
	$C_{\Phi V2}, C_{\Phi V4}$	1,300	pF	
Capacitance between Vertical Transfer Clocks	$C_{\Phi V12}$, $C_{\Phi V34}$	600	pF	
	$C_{\Phi V23}, C_{\Phi V41}$	230	pF	
	$C_{\Phi V13}$	120	pF	
	$C_{\Phi V24}$	90	pF	
Capacitance between Horizontal Transfer Clock and GND	$C_{\Phi H1}, C_{\Phi H2}$	38	pF	
Capacitance between Horizontal Transfer Clocks	С _{ФН12}	38	pF	
Capacitance between Reset Gate Clock and GND	$C_{\Phi RG}$	10	pF	
Capacitance between Substrate Clock and GND	$C_{\Phi SUB}$	1120	pF	
Vertical Transfer Clock Serial Resistor	$R_{\Phi V1} \sim R_{\Phi V4}$	40	Ω	
Vertical Transfer Clock Ground Resistor	R _{GND}	15	Ω	
Horizontal Transfer Clock Serial Resistor	$R_{\Phi H1}, R_{\Phi H2}$	10	Ω	
Reset Gate Clock Serial Resistor	$R_{\Phi RG}$	100	Ω	

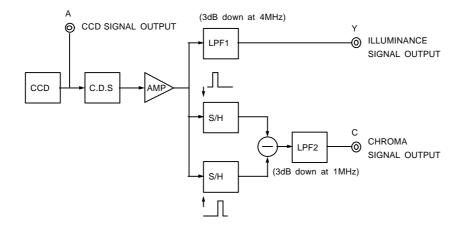

1/3 INCH CCD IMAGE SENSOR FOR PAL

IMAGE SENSOR CHARACTERISTICS

(Ta = 25°C)

ltem	Symbol	Min.	Тур.	Max.	Unit	Test method	Remark
Sensitivity	S	40	55		mV/lux	1	
Saturation Signal	Y _{SAT}	600			mV	2	
Smear	SM			0.015	%	3	
Blooming Margin	BM	1,000			times	4	
Uniformity	U			20	%	5	
Dark Signal	D			2	mV	6	Ta = 50°C
Flicker Y	F _Y			2	%	7	
Flicker Red, Blue	F _{CR} ,F _{CB}			5	%	8	
Color Uniformity	D _{SR} ,D _{SB}			10	%	9	
Line Stripe W,R,G,B	L _{CW} ,L _{CR} , L _{CG} ,L _{CB}			2	%	10	

TESTING SYSTEM

NOTE) Adjust AMP gain so that total gains between A and Y and between A and C equal 1

TEST CONDITION

- 1) Use a light source with color temperature of 3,200K and CM-500S as IR cut filter. The light source is adjusted in accordance with the average value of Y signals indicated in each item.
- 2) Through the following tests the substrate voltage and reset gate clock are set to the value of bias condition while the device condition are at the typical value of the bias and clock conditions.
- 3) Through the following tests, defects are excluded and unless otherwise specified the optical black level (hence forth referred as OB) is set for the reference of the output signal which is taken as the Y signal output or chroma signal output for the test system.

COLOR FILTER ARRAY

The color filter array of this image sensor is shown in the right figure. this complementary mosaic CFA is used with the operation of field integration mode, where all of the photosensors are read out during each video field. The signals from two vertically-adjacent photosensor lines, such as line couple A1 or A2 for field A are summed when the signal charges are transferred into the vertical transfer CCD column. The read out line pairing is shifted down by one line for field B. The sensor output signals through the horizontal register (H-CCD) at line A1 are [G+Cy], [MG+Ye], [G+CY], [Mg+Ye].

These signals are processed in order to compose Y and C signals. By adding the two adjacent signals at line A1, Y signal is formed as follows.

$$Y = \frac{1}{2}[(G + Cy) + (Mg + Ye)]$$
$$= \frac{1}{2}(2B + 3G + 2R)$$

Су Cv Ye Ye A1 G G Mg Mg В Су Ye Cy Ye A2 G G Mg Ma H-CCD

Color coding Diagram

C signal is composed by substracting the two adjacent signals at line A1

$$R - Y = [(Mg + Ye) - (G + Cy)]$$
$$= (2R - G)$$

Next, the signals through H-CCD at line A2 are [Mg+Cy], [G+Ye], [Mg+Cy], [G+Ye]. Simmilary, Y and C signals are composed at line A2 as follows

$$Y = \frac{1}{2}[(G + Ye) + (Mg + Cy)]$$

= $\frac{1}{2}(2B + 3G + 2R)$
- $(B - Y) = [(G + Ye) - (Mg + Cy)]$

= -(2B - G)

Accordingly, Y signal is balanced in relation to scanning lines, and C signal takes the form of R-Y and -(B-Y) on alternate lines. It is same for B field.

TEST METHODS

 Measure the light intensities(L) when the averaged illuminance output value(Y) is the standard illuminance output value, 150mV(Y_A) and when half of 150mV(1/2 Y_A).

$$S = \frac{Y_{A} - \frac{1}{2}Y_{A}}{L_{Y_{A}} - L_{\frac{1}{2}Y_{A}}}$$

- Adjust the light intensity to 10 times that of Y signal output average value (Y_A = 150mV), then test Y signal minimum value (Y=Y_{SAT}).
- 3. Adjust the light intensity to 500 times that of Y signal output average value ($Y_A = 150$ mV), then remove the read-out clock and drain the signal in photosensors by the electronic shutter operation in all the respective horizontal blanking times with the other clocks unchanged. Measure the maximum illuminance output value (Y_{SM}).

$$SM = \frac{Y_{SM}}{Y_{A}} \times \frac{1}{500} \times \frac{1}{10} \times 100(\%)$$

- Adjust the light intensity to 1000 times that of Y signal output average value (Y_A = 150mV), Then confirm that Blooming dose not appear.
- 5. Measure the maximum and minimum illuminance output value (YMAX, YMIN) when the light intensity is adjusted to make Y to be Y_A.
 - U = (YMAX YMIN) /YA X 100. (%)
- Measure Y signal output average value Y_D[mV] with the horizontal idling time transfer level as reference, when the device ambient temperature is 50°C and all of the light sources are shielded.
- 7. Adjust the light intensity to make $Y=Y_A$. Measure the difference value (ΔY_F) between the averaged illuminance signal values of the even and odd fields.

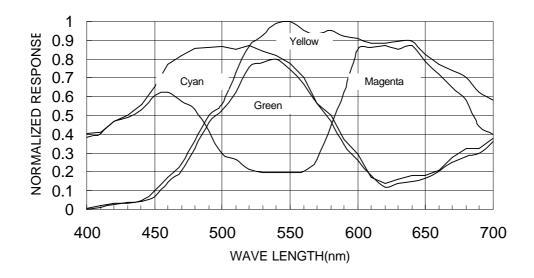
$$F_Y = \frac{\Delta Y_F}{Y_A}$$

 Adjust the light intensity to make Y=Y_A. Then insert red (R) and blue (B) optical filters respectively, measure the differences (ΔC_R, ΔC_B) between the chroma signal values in even and odd fields and the C signal output averag value (C_R, C_B).

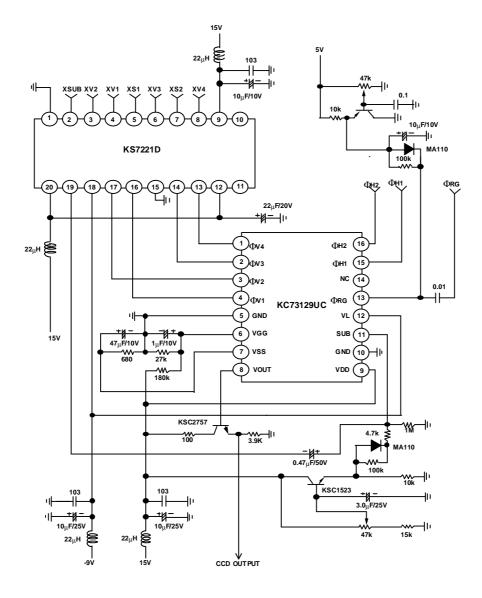
$$F_{C_i} = \frac{\Delta C_i}{C_i} \times 100(\%)$$
, where i = R, B

 Adjust the light intensity to make Y=Y_A. Then test maximum(C_{R,MAX}and C_{B,MAX}) and minimum(C_{R,MIN} and C_{B,MIN}) values of chroma signals from R-Y and B-Y channels.

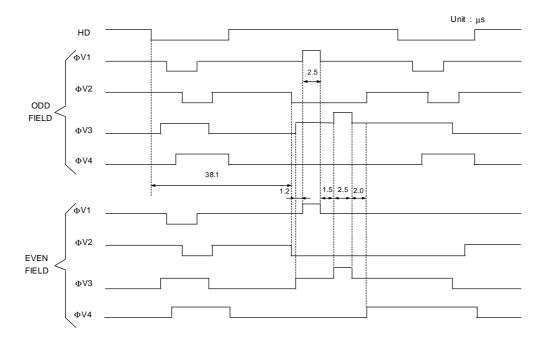
$$DS_{i} = \frac{C_{i,MAX} - C_{i,MIN}}{Y_{i}} \times 100(\%), \text{ where } i = R, B$$


10. Adjust the light intensity to make Y = 150mV(Y_L). Then insert white (no filter, W), red(R), green(G) and blue(B) optical filters respectively, measure the illuminance signal difference values (Δ Y_{LW}, Δ Y_{LR}, Δ Y_LG, Δ Y_{LB}) between illuminance signal lines of the same field.

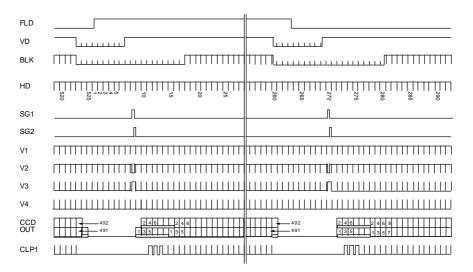
$$L_{C_i} = \frac{\Delta Y_{L_i}}{Y_L} \times 100(\%) \quad \text{, where i = W, R, G, B}$$


SPECTRAL RESPONSE CHARACTERISTICS

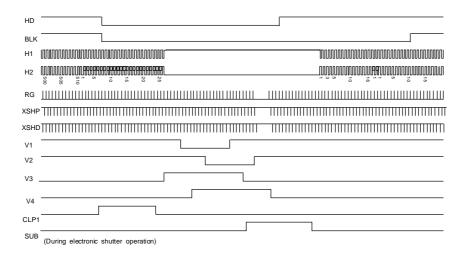
(Excluding light source characteristics)



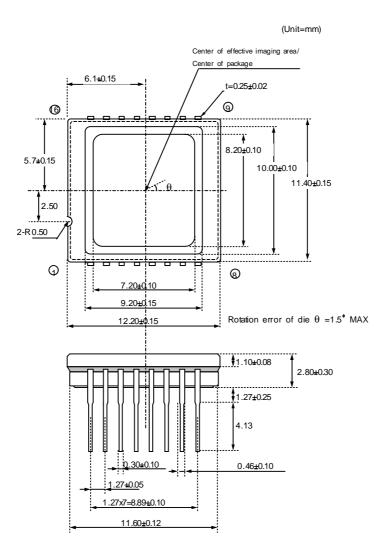
APPLICATION CIRCUITS



READ-OUT CLOCK TIMING CHART



CLOCK TIMING CHART (VERTICAL SYNC.)



CLOCK TIMING CHART (HORIZONTAL SYNC.)

PACKAGE DIMENSIONS

1. Optical center deviation from mechanical center = ± 0.15 mm for X and Y direction. 2. Optical surface height from glass lid surface = 1.1 ± 0.15 mm 3. Optical surface height from package backside bottom = 1.7 ± 0.10 mm

HANDLING INSTRUCTION

1. Static charge prevention

- CCD image sensors can be easily damaged by static discharge. Before handling besure to take the following protective measures.
- 1) Either handle bare handed or use non chargeable gloves, clothes or material. Also use conductive shoes. 2) When handling directly, use an earth band.
- 3) Install a conductive mat on the floor or working table to prevent generation of static electricity. 4) lonized air is recommended for discharging when handling CCD image sensor.
- 5) For the shipment of mounted substrates, use boxes treated for the prevention of static charges.

2. Soldering

- 1) Make sure the package temperature does not exceed 80°C
- 2) Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a grounded 30W soldering iron and solder each pin in less than 2 seconds. For repairs and remount, cool sufficiently.
- 3) To dismount an imaging device, do not use a solder suction equipment. When using an electronic disoldering tool, use a thermal controler of the zero cross On/Off type and connect to ground

3. Dust and Dirt protection

- 1) Operate in the clean environments (around class 1000 will be appropriate).
- 2) Do not either touch glass plates by hand or have object come in contact with glass surface. Should dirt stick to a glass surface blow it off with an air blow (for dirt stuck through static electricity ionized air is recommended). 3) Clean with a cotton bud and ethyl alcohol if the glass surface is grease stained. Be carful not to scratch the glass.
- 4) Keep in case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving to a room whith great temperature differences
- 5) When a protective tape is applied before shipping, just before use remove the tape applied electrostatic protection. Do not reuse the tape.

4. Do not expose to strong light (sun rays) for long period, color filter are discolored

5. Exposure to high temperatures or humidity will affect the characteristics. Accordingly avoid storage or usage in such conditions.

6. CCD image sensors are precise optical equipment that should not be subject to mechanical shocks.

