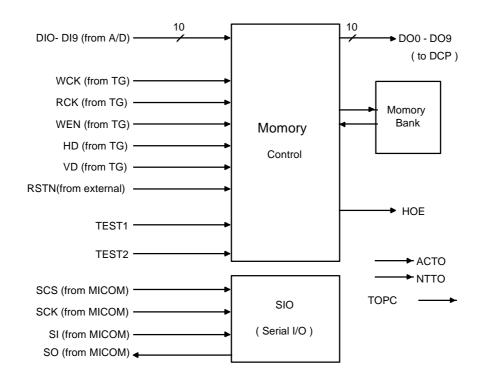

GENERAL DESCRIPTION

FCM(Frequency Conversion Memory) is the high speed line memory that has two 1024X10bits memory banks. KS7308 is designed as low power consumption by CMOS technology. KS7308 is used for camcorder with digital image stabilizer feature.

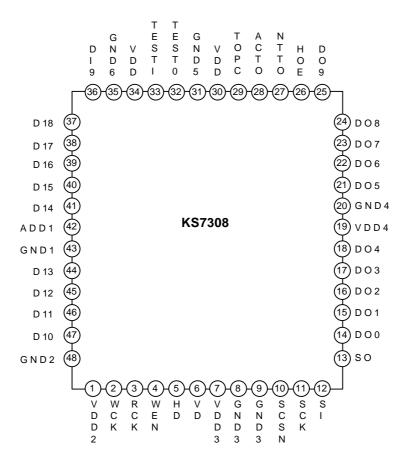
FEATURES


- 1024X10bits 2 bank Line memory.
- Independent Read/Write Operation.
- Programmable Read Start Address and Write Start Address.
- HD Pre-counter for Horizontal blanking.
- Serial-Interface Circuit
- CMOS Double metal technology
- 5V Power supply

ORDRING INFORMATION

Device	Package	Operating Temperature
KS7308	48-QFP-0707	0 ~ 70°C

BLOCK DIAGRAM


PIN DESCRIPTION

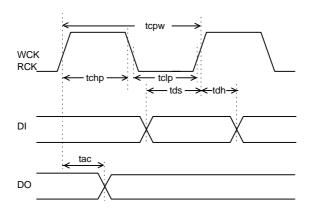
PIN NO.	Symbol	I/O	Description	Note	
1	VDD1	1 - Power Supply (5V)			
2	WCK	I	Memory write clock from TG		
3	RCK	I	Memory read clock from TG		
4	WEN	I	Memory write enable from TG		
5	HD	I	Horizontal Driving pulse from TG		
6	VD	I	Vertical Driving pulse from TG		
7	VDD3	-	Power Supply (5V)	vdd5i	
8	GND3	-	Ground	vssi	
9	RSTN	I	Reset		
10	SCSN	I	SIO enable from MICOM		
11	SCK	I	SIO clock from MICOM		
12	SI	I	SIO data input from MICOM		
13	SO	0	SIO data output to MICOM		
14	DO0	0	Data output bit0		
15	DO1	0	Data output bit1		
16	DO2	0	Data output bit2		
17	DO3	0	Data output bit3		
18	DO4	0	Data output bit4		
19	VDD4	-	Power Supply (5V)	vdd5o	
20	GND4	-	Ground	VSSO	
21	DO5	0	Data output bit5		
22	DO6	0	Data output bit6		
23	D07	0	Data output bit7		
24	DO8	0	Data output bit8		
25	DO9	0	Data output bit9		
26	HOE	0	Horizontal odd/even signal output		
27	NTTO	0	Test output (Vin test)		
28	ACTO	0	Test output (Vin test)		
29	TOPC	i	Test input (ACTO control)		
30	VDD5	-	Power Supply (5V)	vdd	
31	GND5	-	Ground	vdd5o	
32	TEST0	1	Test input (Mode control)		
33	TEST1	i	Test input (Mode)		
34	VDD6	-	Power Supply (5V)	vdd5p	
35	GND6	_	Ground	vssp	
36	DI9	ı	Data input bit9	1006	
37	DI8	i	Data input bit8		
38	DI7	i	Data input bit7		
39	DI6	i	Data input bit6		
40	DI5	i	Data input bit5		
41	DI4	i	Data input bit4		
42	VDD1	<u> </u>	Power supply (5V)	vdd5i	
43	GND1	_	Ground	vssi	
44	DI3	i	Data input bit3	¥331	
45	DI2	<u> </u>	Data input bit3 Data input bit2		
46	DI1	<u> </u>	Data input bit1		
47	DI0	<u> </u>	Data input bit0		
48	GND2	<u>'</u>	Ground	vssp	

TEST1	TEST0	TEST Mode					
0	0	Normal operation					
0	1 Memory Function Test						
1	0	SRAM-A Read/Write Test					
1	1	SRAM-B READ/Write Test					

PIN ASSIGNMENT

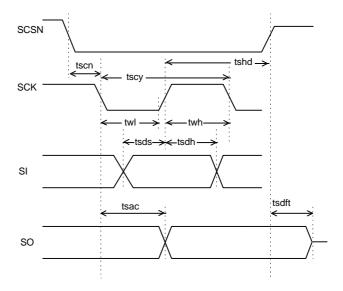
ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Rating	Unit
Storage temperature	Tstg	-40 ~125	°C
Operating temperature	Topr	0 ~ 70	°C
Supply voltage	Vdd	-0.3 ~ 7.0	V
Input voltage	Vin	-0.3 ~ Vdd +0.3	V


ELECTRICAL CHARACTERISTICS (Vdd = $4.75 \sim 5.25$ V Ta = +25°C)

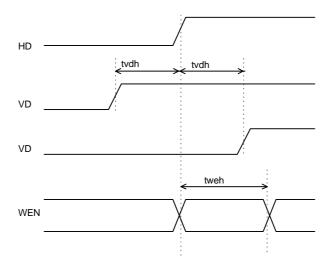
Characteristics	Symbol	Condition	Min	Тур	Max	Unit
Low level input voltage	VIL		-	-	0.3Vdd	V
High level input voltage	VIH		0.7Vdd	-		V
Low level output voltage	VOL1	IOL = 4mA	-	-	0.4	V
Low level output voltage 2	VOL2	IOL = 1mA	-	-	0.4	V
High level output voltage 1, 2	VOH	IOH = 1mA	2.4	-	-	V
Input Low current	IIL	Vin = Vss(Gnd)	-10	-	+10	uA
Input High current	IIH	Vin = Vdd	-10	-	+10	uA
Output leakage current	IOZ		-10	-	+10	uA
Supply current	ldd	Vin = Vdd	-	-	40	mA

NOTE: *1 = NTTO,ACTO *2 = SO, DO [9 : 0], HOE


AC ELECTRICAL CHARACTERISTICS

Vdd = 5.0 V

Characteristics	Symbol	Min	Max	Unit	
Clock cycle time	tcpw	54	tscy	ns	tscy : SCK clock
Clock high time	tchp	20		ns	
Clock low time	tclp	20		ns	
Write data hold time	tdh	0		ns	
Write data set up time	tds	10		ns	
Data access time	tac		40	ns	CL = 75pF



Vdd = 5.0

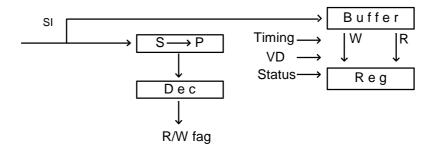
Characteristics	Symbol	Min	Max	Unit	Condition
Serial clock cycle time	tscy	2		us	
Serial clock high time	twh	700		ns	
Serial clock low time	twl	700		ns	
Serial data hold time	tsdh	30		ns	
Serial data set up time	tsds	30		ns	
Serial data set access time	tsac		500	ns	
Serial daa floating time	tsdft		20	ns	
SCSN set up time	tscn	30		ns	
SCSN hold time	tshd	30		ns	

Vdd = 5.0V

Characteristics	Symbol	Min	Max	Unit	Condition
VD level hold time	tvdh	4		RCK	RCL clock
WEN level hold time	tweh	5		RCK	RCK clock

OPERATING

FCM has a SIO which is connected to DIS-MICOM. This SIO type can take 4wire type serial communication with DIS-MICOM. MICOM can read the status of serial communication error such as parity error and Stop - Byte error. Read start address should contain a zoom value and a motion vecter calculated by DIS -MICOM. FCM starts to out data regarding of the contents of the read start address resister. Thus, by setting proper read start address, Digital Image Stabilizer can be realized in a hoizontal direction. FCM has a HD precounter also to eliminate unnecessary data count in the memory bank.


1. DATA ACCESS

FCM supports normal 4 wired serial interface. The serial data is shifted from the MSB side. There are 6 resisters with 8 hit

These are:

- (1) SMOD (Serial Mode Resister)
- (2) Read start address reister (2 Byte)
- (3) Writer start address resister (2 Byte)
- (4) HD precounter resister (1 Byte)

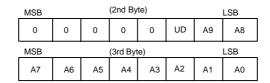
When user want to change one of above register contents, always user has to provide whole contents of each registers. And STOP Byte should follow. Thus, user has to send total 7 Byte data per each serial communication. For read only status register is valid for normal operation to check SIO operation condition.

2. SIO REGISTER

[Register diagram]

SMOS resister

MSB				LSB						
0	0	0	0	RE	WE	0	0			
aroun address										


group address

RE = 0, WE = 1 : Write enable (Write to register)

RE = 1, WE = 0 : Read enable (Read from counter outupt without UD bit) RE = 0, WE = 0 : No operation RE = 1, WE = 1 : Prohibited

Read start address register (2 Byte)

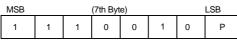
Defines read start position in the bank memory.

UD = 0 : Ciybter increment

UD = 1 : Counter decrement

Write start address register (2 Byte)

Defines write start position in the bank memory

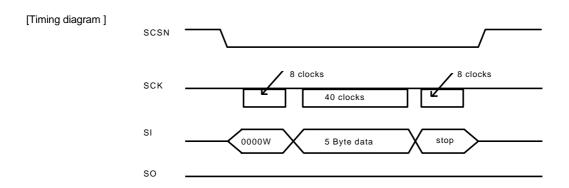

MSB				LSB			
0	0	0	0	0	0	A9	A8
MSB				LSB			
A7	A6	A5	A4	А3	A2	A1	A0

HD control register

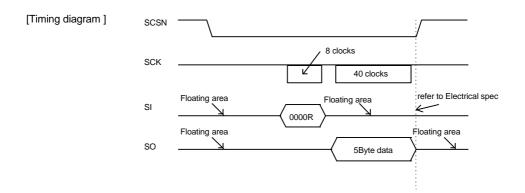
Control to start read address counter incrementation from rising edge of HD.

MSB				LSB			
D7	D6	D5	D4	D3	D2	D1	D0

Stop Byte


P : Even parity

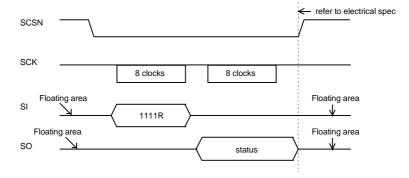
3. MICOM DATA WRITE


(1) First data (SMOD) will entr to S/P buffer from SI for Command decoding. To specify write mode, W - bit has to be set "1" then. FCM is configurated to accept write access from MICOM.

- (2) 4 Address data and HD control data will be written to Serial buffer.
- (3) Last data (Stop Byte) in S/P will be checked such as Stop code and even parity.
- (4) Data in serial buffer will be transferd to internal register at VD rising edge.

4. MICOM Data Read

- (1) First data (SMOD) will enter to S/P buffer from SI for Command decoding. To specify read mode, R bit has to be set "1" then. FCM is configured to accept read operation by driving SO.
- (2) 4 counter values (Read Address counter; 2 Byte, Writer Address counter; 2 Byte,) and HD counter value are read out to SO pin.


5. SIO STATUS READ

There is one status register to be read out by MICOM. There are 2 bit flags whigh are PE and WF respectivity. The MICOM should check this status to test.

- (1) Serial communication is successfully completed or not.
- (2) Setting data are loaded into each register or not.

It is up to user to judge this flag or not.

[Timing diagram]

[Status register diagram]

Command

RE = 1, WE = 0 : Read enable RE = 0, WE = 1 : Prohibited RE = 0, WE = 0 : Prohibited RE = 1, WE = 1 : Prohibited

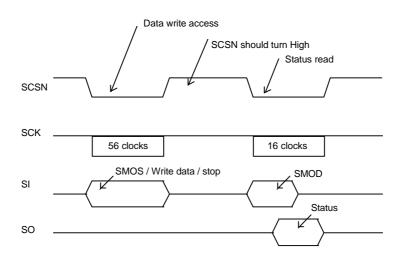
Read data

_ N	ИSВ					LSB		
	PE	WF	0	0	0	0	0	0

PE: Register write error flag

PE = 1 : Error PE = 0 : No Error

WF: Register write status flag


WF = 1 : Waiting for loading into the register

WF = 0 : Loaded

6. SIO COMMUNICATION PROTOCOL

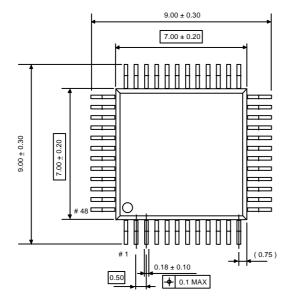
(1) Standard protocol of data write

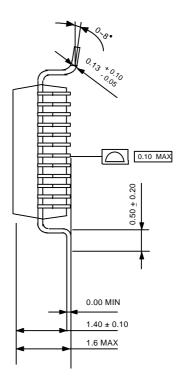
(2) Invalid write data

When user initiate SIO operation before previouse write operation data is loaded into resister at VD timiing, then initial data will be broken.

7. RESET CONDITION

The system should supply reset condition by RSTN pin as low level. FCM will initialize each register value as follows.


- (1) Read/Write address register and Counter is set to "0"
- (2) HD register is set to "0".(3) SMOD register is set to "0"
- (4) SO becomes high impedance state.



PKG DIAGRAM

48-QFP-0707

Unit: mm

