1

# **PRODUCT OVERVIEW**

# **SAM87RI PRODUCT FAMILY**

Samsung's SAM87RI family of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range of integrated peripherals, and various mask-programmable ROM sizes.

A dual address/data bus architecture and a large number of bit- or nibble-configurable I/O ports provide a flexible programming environment for applications with varied memory and I/O requirements. Timer/counters with selectable operating modes are included to support real-time operations. Many SAM87RI microcontrollers have an external interface that provides access to external memory and other peripheral devices.

# KS86C0004/P0004/C0104/P0104 MICROCONTROLLER

The KS86C0004/P0004/C0104/P0104 single-chip 8-bit microcontroller is fabricated using an advanced CMOS process. It is built around the powerful SAM87RI CPU core.

Stop and Idle power-down modes were implemented to reduce power consumption. To increase on-chip register space, the size of the internal register file was logically expanded. The KS86C0004/P0004/C0104/P0104 has 4 K bytes of program memory on-chip.

Using the SAM87RI design approach, the following peripherals were integrated with the SAM87RI core:

- Five configurable I/O ports (32 pins)
- 12 bit-programmable pins for external interrupts
- 8-bit timer/counter with three operating modes

The KS86C0004/P0004/C0104/P0104 is a versatile microcontroller that can be used in a wide range of general purpose applications. It is especially suitable for use as a keyboard controller and is available in a 40-pin DIP and a 44-pin QFP package.

# **OTP**

The KS86C0004/C0104 microcontroller is also available in OTP (One Time Programmable) version, KS86P0004/P0104. KS86P0004/P0104 microcontroller has an on-chip 8-Kbyte one-time-programmable EPROM instead of masked ROM. The KS86P0004/P0104 is comparable to KS86C0004/C0104, both in function and in pin configuration.



# **FEATURES**

#### **CPU**

SAM87RI CPU core

# Memory

- 4-Kbyte internal program memory (ROM)
- 208-byte internal register file
- 8-Kbyte external program memory
- 8-Kbyte external data memory

# **Instruction Set**

- 41 instructions
- IDLE and STOP instructions added for powerdown modes

#### **Instruction Execution Time**

1.5 μs at 4 MHz f<sub>OSC</sub>

# Interrupts

- 14 interrupt sources with one vector, Each source has its pending bit
- One level, one vector interrupt structure

#### **Oscillation Circuit Options**

- 4 MHz RC oscillator with on chip capacitor for KS86C0004/P0004 (± 10% RC accuracy at V<sub>DD</sub> ±5% and Ta = 0°C -70°C, using 1% external precision resistor)
- RC oscillator for KS86C0004/P0004
- Crystal/ceramic oscillator for KS86C0104/P0104

#### General I/O

- Five ports (32 pins total)
- Three bit-programmable ports (20 pins total)
- Two bit-programmable ports with external interrupts (12 pins total)

#### Timer/Counter

- One 8-bit basic timer for watchdog function and programmable oscillation stabilization interval generation function
- One 8-bit timer/counter with PWM mode

# **Operating Temperature Range**

•  $-40^{\circ}$ C to  $+85^{\circ}$ C

# **Operating Voltage Range**

- 4.5 V to 5.5 V for KS86C0004/P0004
- 2.7 V to 5.5 V for KS86C0104/P0104

# **Package Types**

• 40-pin DIP



# **BLOCK DIAGRAM**

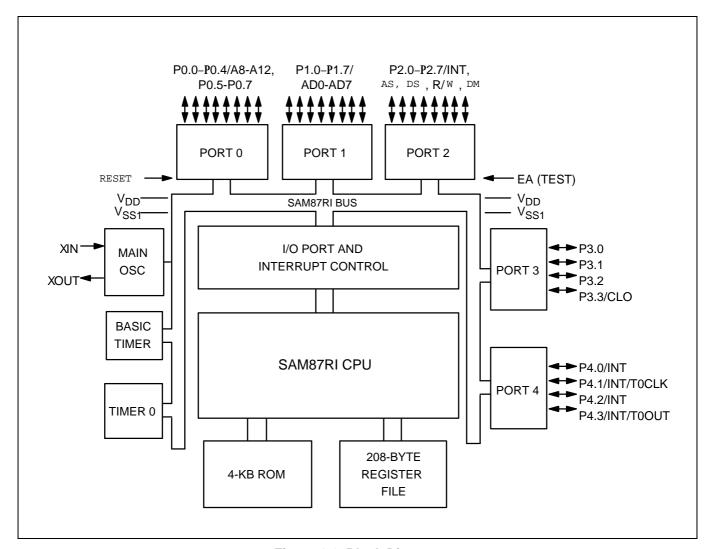



Figure 1-1. Block Diagram

# **PIN ASSIGNMENTS**

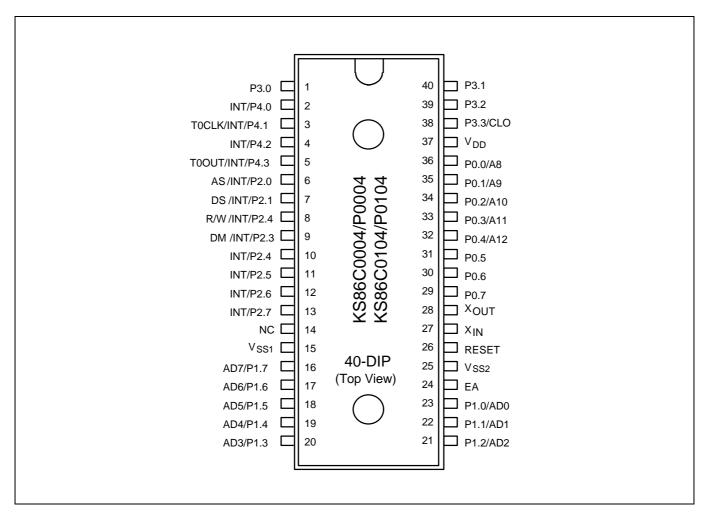



Figure 1-2. Pin Assignment Diagram (40-Pin DIP Package)



# **PIN DESCRIPTIONS**

Table 1-1. KS86C0004/P0004/C0104/P0104 Pin Descriptions

| Pin<br>Names                        | Pin<br>Type | Pin<br>Description                                                                                                                                                                                                                                                                             | Circuit<br>Number | Pin<br>Numbers | Share<br>Pins              |
|-------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|----------------------------|
| P0.0-P0.7                           | I/O         | Bit-programmable I/O port for Schmitt trigger input or open-drain output. Port0 can also be configured as external interface address lines A8–A12.                                                                                                                                             | С                 | 36–29          | A8-A12                     |
| P1.0-P1.7                           | I/O         | Bit-programmable I/O port for Schmitt trigger input, push-pull, or open-drain output. Port1 can alternatively be used as external interface address/data lines AD0–AD7.                                                                                                                        | С                 | 23–16          | AD0-AD7                    |
| P2.0-P2.7                           | I/O         | Bit-programmable I/O port for Schmitt trigger input or push-pull output. Port2 can be individually configured as external interrupt inputs. Especially, P2.0–2.3 can be configured for external bus control signal.                                                                            | D                 | 6–13           | INT, AS,<br>DS, R/W,<br>DM |
| P3.0-P3.3                           | I/O         | Same general characteristics as Port1. Port3 are designed for to drive LED directly. P3.3 can be used to system clock output (CLO) port.                                                                                                                                                       | С                 | 1, 40–38       | P3.3/CLO                   |
| P4.0-P4.3                           | I/O         | Bit-programmable I/O port. Input mode or n-channel open-drain output mode is software assignable. Port4 can be individually configured as external interrupt inputs. Pull-up resistors are also software assignable. Especially, P4.1 can be used TOCLK input and P4.3 also TOOUT for Timer 0. | D                 | 2–5            | INT,<br>TOCLK,<br>TOOUT    |
| X <sub>IN</sub> , X <sub>OUT</sub>  | _           | System clock input and output pin (for RC oscillator, crystal/ceramic oscillator, or external clock source)                                                                                                                                                                                    | _                 | 27, 28         | _                          |
| INT                                 | I           | External interrupt for bit-programmable port2 and port4 pins when set to input mode.                                                                                                                                                                                                           | _                 | 2-13           | PORT2/<br>PORT4            |
| RESET                               | I           | RESET signal input pin. Schmitt trigger input with internal pull-up resistor.                                                                                                                                                                                                                  | Α                 | 26             | _                          |
| EA                                  | l           | External Memory Access (EA) pin with 2 modes: 0V = Normal Operation Mode 5V = ROMLESS Operation Mode (Must be connected to V <sub>SS</sub> during normal operation mode)                                                                                                                       | В                 | 24             | -                          |
| $V_{DD}$                            | _           | Power input pin                                                                                                                                                                                                                                                                                | _                 | 37             | _                          |
| V <sub>SS1</sub> , V <sub>SS2</sub> | _           | Vss1 is a ground power for CPU core. Vss2 is a ground power for I/O and OSC block                                                                                                                                                                                                              | _                 | 15, 25         | _                          |
| NC                                  | _           | No connection (This pin would be better connecting to $V_{SS}$ )                                                                                                                                                                                                                               | _                 | 14             | _                          |



# **PIN CIRCUITS**

Table 1-2. Pin Circuit Assignments for the KS86C0004/P0004/C0104/P0104

| Circuit Number | Circuit Type | KS86C0004/P0004/C0104/P0104 Assignments |
|----------------|--------------|-----------------------------------------|
| Α              | 1            | RESET signal input                      |
| В              | I            | EA input                                |
| С              | I/O          | Ports 0, 1, and 3                       |
| D              | I/O          | Ports 2 and 4                           |

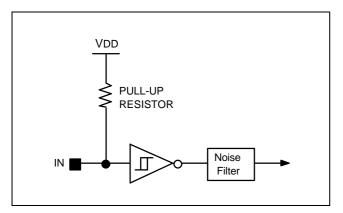



Figure 1-3. Pin Circuit Type A (RESET)

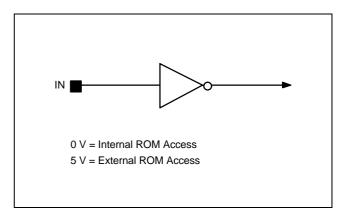



Figure 1-4. Pin Circuit Type B (EA)

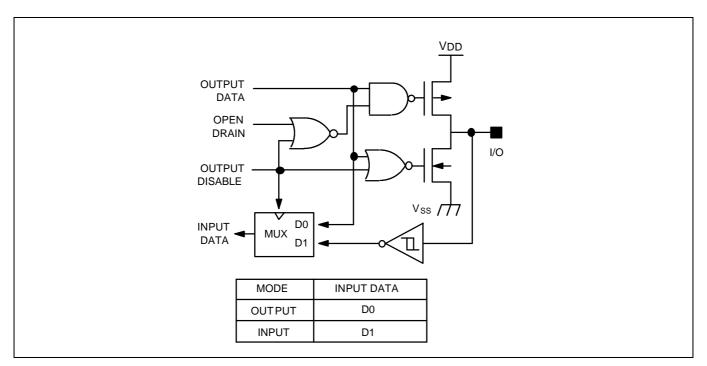



Figure 1-5. Pin Circuit Type C (Ports 0, 1, and 3)

