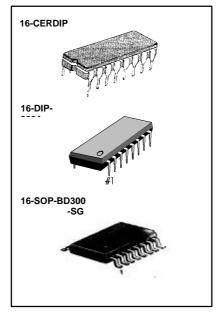
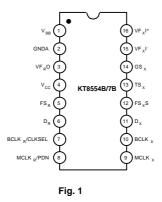
INTRODUCTION


The KT8554B/7B are single-chip PCM encoders and decoders (PCM CODECs) and PCM line filters. These devices provide all the functions required to interface a full-duplex voice telephone circuit with a time-division-multiplex (TDM) system.

These devices are designed to perform the transmit encoding and receive decoding as well as the transmit and receive filter-ing functions in PCM system. They are intended to be used at the analog termination of a PCM line or trunk.

These devices provide the bandpass filtering of the analog signals prior to encoding and after decoding. These combina-tion devices perform the encoding and decoding of voice and call progress tones as well as the signalling and supervision information.

FEATURES


- Complete CODEC and filtering system
- Meets or exceeds AT&T D3/D4 and CCITT specifications
- $\mu\text{-Law}$: KT8554B, A-Law : KT8557B On-chip auto zero, sample and hold, and precision
- voltage references • Low power dissipation : 60mW (operating)
- 3mW (standby)
- ± 5V operation
 TTL or CMOS compatible
- Automatic power down

ORDERING INFORMATION

Device	Package	Operating Temperature
KT8554BJ	16-CERDIP	- 25 ~ 125°C
KT8557BJ	10-CERDIF	- 20 ~ 120 0
KT8557BN	16-DIP-300A	- 25 ~ 70°C
KT8554BN	10-DIF-300A	- 23 ~ 70 0
KT8554BD	16-SOP-BD300	- 25 ~ 70°C
KT8557BD	-SG	- 23 ~ 70 0

PIN CONFIGURATION

PIN DESCRIPTION

Pin No	Symbol	Description
1	V _{BB}	$V_{BB} = -5V \pm 5\%.$
2	GNDA	Analog ground.
3	VF _R O	Analog output of the receive power Amp.
4	V _{cc}	$V_{cc} = +5V \pm 5\%$.
5	FS _R	Receive frame sync pulse. 8KHz pulse train.
6	D _R	PCM data input.
7	BCLK _R / CLKSEL	Logic input which selects either 1.536MHz/1.544MHz or 2.048MHz for master clock in normal operation and BCLK _X is used for both TX and RX directions. Alternately direct clock input available, very from 64KHz to 2.048MHz.
8	MCLK _R / PDN	When MCLK _R is connected continuously high, the device is powered down. Normally connected continusously low, MCLK _X is selected for all DAC timing. Alternately direct 1.536MHz/1.544MHz or 2.048MHz clock input available.
9	MCLK _x	Must be1.536MHz/1.544MHz or 2.048MHz.
10	BCLK _x	May be vary from 64KHz to 2.048MHz but BCLK_{x} is externally tied with MCLK_{x} in normal operation.
11	D _x	PCM data output.
12	FS _x	TX frame sync pulse. 8KHz pulse train.
13	TS _x	Changed from high to low during the encoder timeslot. Open drain output.
14	GS _x	Analog output of the TX input amplifier. Used to set gain through external resistor.
15	VF _x I ⁻	Inverting input stage of the TX analog signal.
16	VF _x I ⁺	Non-inverting input stage of the TX analog signal.

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Positive Supply Voltage	V _{cc}	7	V
Negative Supply Voltage	V _{BB}	- 7	V
Voltage at Any Analog Input or Output	V _{1 (A)}	$V_{\rm CC}$ + 0.3 to $V_{\rm BB}$ - 0.3	V
Voltage at Any Digital Input or Output	V _{I (D)}	V _{cc} + 0.3 to GNDA - 0.3	V
Operating Temperature Range	Та	- 25 to + 125	°C
Storage Temperature Range	T _{STG}	- 65 to + 150	°C
Lead Temperature (Soldering, 10 secs)	T_{LEAD}	300	°C

ELECTRICAL CHARACTERISTICS

(Unless otherwise noted, $V_{CC} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$, GNDA = 0V, Ta = 0 °C to 70 °C ; typical characteristics specified at $V_{CC} = 5.0V$, $V_{BB} = -5.0V$, Ta = 25 °C ; all signals referenced to GNDA).

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Dissipation		I				I
Power-Down Current	ICC (DOWN)	No Load		0.5	1.5	mA
Power-Down Current	IBB (DOWN)	No Load		0.05	0.3	mA
Active Current	I _{CC (A)}	No Load		6.0	9.0	mA
Active Current	I _{BB (A)}	No Load		6.0	9.0	mA
Digital Interface						
Input Low Voltage	VIL				0.6	V
Input High Voltage	VIH		2.2			V
Input Low Current	I _{IL}	$GNDA \le V_{IN} \le V_{IL}$, all digital inputs	-10		10	μΑ
Input High Current	I _{IH}	$V_{H} \leq V_{IN} \leq V_{CC}$	-10		10	μΑ
-		D_{x} , I_{L} = 3.2mA			0.4	V
Output Low Voltage	V _{OL}	SIG_{R} , $I_{L} = 1.0 mA$			0.4	V
		\overline{TS}_{X} , I _L = 3.2mA,open drain			0.4	V
Output High Voltage	V _{OH}	D_{x} , $I_{H} = -3.2mA$	2.4			V
Ouput high voltage	♥ OH	SIG_{R} , I_{H} = -1.0 mA	2.4			V
Output Current in High Impedance State (TRI-STATE)	I _{O (HZ)}	D_x , GNDA $\leq V_o \leq V_{cc}$	-10		10	μΑ
Analog Interface with Receive Filt	er					
Output Resistance	Ro	Pin VF _R O		1	3	Ω
Load Resistance	R∟	$VF_{R}O = \pm 2.5V$	600			Ω
Load Capacitance	CL				500	pF
Output DC Offset Voltage	V _{OO (RX)}		-200		200	mV
Analog Interface with Transmit in		er				
Input Leakage Current	I _{LKG}	-2.5V≤V≤+2.5V, VF _x I + or VF _x I -	-200		200	nA
Input Resistance	R	-2.5V≤V≤+2.5V, VF _x I + or VF _x I -	10			MΩ
Output Resistance	Ro	Closed loop, unity gain		1	3	Ω
Load Resistance	RL	GS _x	10			KΩ
Load Capacitance	C	GS _x			50	pF
Output Dynamic Range	V _{OD (TX)}	 GS _x , R₁≤10KW	±2.8			V
Voltage Gain	G _v	VF _x I + to GS _x	5,000			V/V
Unity Gain Bandwidth	BŴ		1	2		MHz
Offset Voltage	V _{IO (TX)}		-20		20	mV
Common-Mode Voltage	V _{CM (TX)}	CMRRXA > 60dB	-2.5		2.5	V
Common-Mode Rejection Ratio	CMRR	DC Test	60			dB
Power Supply Rejection Ratio	PSRR	DC Test	60			dB

TIMING CHARACTERISTICS

(Unless otherwise noted, $V_{cc} = 5.0 \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$, GNDA = 0V, Ta = 0°C to 70 °C; typical characteristics specified at $V_{cc} = 5.0V$, $V_{BB} = -5.0V$, Ta = 25 °C; all signals referenced to GNDA.)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Frequency of Master Clocks	f _{мск}	Depends on the device used and the $BCLK_R/CLKSEL$ Pin. $MCLK_x$ and $MCLK_R$		1.536 1.544 2.048		MHz MHz MHz
Rise Time of Bit Clock	t _{R (BCK)}	t _{PB} = 488ns			50	ns
Fall Time of Bit Clock	t _{F (BCK)}	t _{PB} = 488ns			50	ns
Holding Time from Bit Clock Low to Frame Sync	$t_{\rm H(LFS)}$	Long frame only	0			ns
Holding Time from Bit Clock High to Frame Sync	$t_{\rm H(HFS)}$	Short frame only	0			ns
Set-Up Time from Frame Sync to Bit Clock Low	$t_{\rm SU(FBCL)}$	Long frame only	80			ns
Delay Time from BCLK _x High to Data Valid	t _{D (HDV)}	Load = 150pF plus 2 LSTTL loads	0		180	ns
Delay Time to $\overline{TS_x}$ Low	$t_{D} (\overline{TSXL)}$	Load = 150pF plus 2 LSTTL loads			140	ns
Delay Time from BCLK _x Low to Data Output Disabled	t _{D (LDD)}		50		165	ns
Delay Time to Valid Data from FS_x or $BCLK_x$, Whichever Comes Later	t _{D (VD)}	$C_L = 0pF$ to 150pF	20		165	ns
Set-Up Time from D_R Valid to BCLK _{R/X} Low	$t_{\rm SU(DRBL)}$		50			ns
Hold Time from $\mathrm{BCLK}_{\mathrm{R/X}}$ Low to D_{R} Invalid	t _{H (BL DR)}		50			ns
Set-Up Time from FS _{x/R} to BCLK _{x/R} Low	$t_{\rm SU(FBLS)}$	Short frame sync pulse (1 or 2 bit clock periods long) (Note1)	50			ns
Width of Master Clock High	t _{W (MCKH)}	MCLK _x and MCLK _R	160			ns
Width of Master Clock Low	t _{w (MCKL)}	MCLK _x and MCLK _R	160			ns
Rise Time of Master Clock	t _{R (MCK)}	MCLK _x and MCLK _R			50	ns
Fall Time of Master Clock	t _{F(MCK)}	MCLK _x and MCLK _R			50	ns
Set-Up Time from $BCLK_x$ High (and FS _x In Long Frame Sync Mode) to $MCLK_x$ Falling Edge	t _{su (BHMF)}	First bit clock after the leading edge of FS_x				
Period of Bit Clock	t _{ck}		485	488	15,72 5	ns
Width of Bit Clock High	t _{w (BCKH)}	V _{IH} = 2.2V	160			ns
Width of Bit Clock Low	$t_{W (BCKL)}$	V _{IL} = 0.6V	160			ns

TIMING CHARACTERISTICS (Continued)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Hold Time from $BCLK_{XR}$ Low to FS_{XR} Low	$t_{\rm H(BLFL)}$	Short frame sync pulse (1 or 2 bit clock periods long) (Note 1)	100			ns
Hold Time from 3rd Period of Bit Clock Low to Frame Sync $(FS_x \text{ or } FS_R)$	t _{H (3rd)}	Long frame sync pulse (from 3 to 8 bit clock periods long)	100			ns
Minimum Width of the Frame Sync Pulse (Low Level)	t _{WFL}	64K bit/s operating mode	160			ns

Note 1 : For short frame sync timing, $FS_{\rm X}$ and $FS_{\rm R}$ must go high while their respective bit clocks are high.

TIMING DIAGRAM

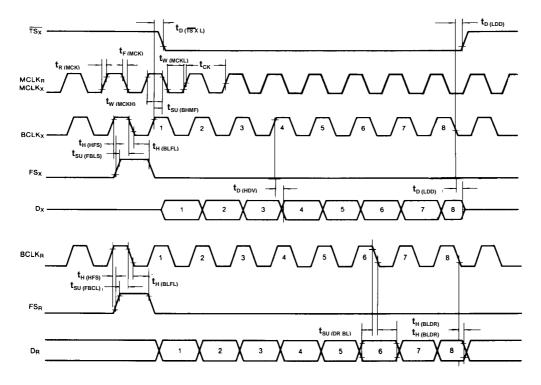


Fig. 2. Short Frame Sync Timing

KT8554B/7B

TIMING DIAGRAM (Continued)

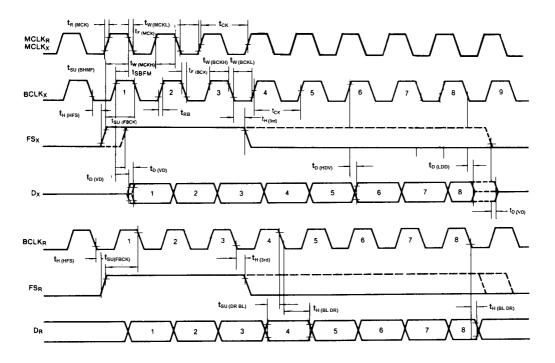


Fig. 3 Long Frame Sync Timing

TRANSMISSION CHARACTERISTICS

(Unless otherwise specified : Ta = 0°C to 70°C, V_{CC} = 5V ±5%, V_{BB} = -5V ±5%, GNDA = 0V, f = 1.02KHz, V_{IN} = 0dBm0, transmit input amplifier connected for unity-gain non-inverting.)

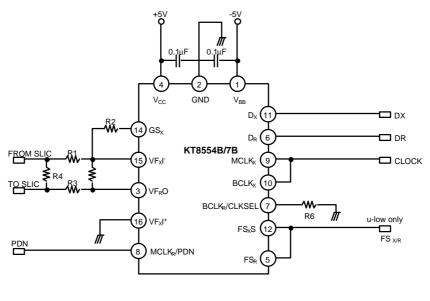
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Amplitude Respons						
Receive Gain, Absolute	G _{V (ARX)}	Ta = 25 °C, V_{CC} = 5V, V_{BB} = -5V Input = Digital code sequence for 0dBm0 signal at 1020Hz	-0.15		0.15	dB
Receive Gain, Relative to $G_{V(\text{ARX})}$	G _{V (RRX)}	f = 0Hz to 3000Hz f = 3300Hz f = 3400Hz f = 4000Hz	-0.15 -0.35 -0.7		0.15 0.05 0 -14	dB dB dB dB
Absolute Receive Gain Variation with Temperature	$\Delta G_{V (ARX)} / \Delta T$	Ta = 0 °C to 70 °C			±0.1	dB
Absolute Receive Gain Variation with Supply Voltage	$\Delta G_{V (ARX)} / \Delta V$	$V_{CC} = 5V \pm 5\%, V_{BB} = -5V \pm 5\%$			±0.05	dB
Receive Gain Variations with Level	$\Delta G_{V(\text{RXL})}$	Sinusoidal test method ; reference input PCM code corresponds to an Ideally encoded -10dBm0 signal PCM level = -40dBm0 to +3dBm0 PCM level = -50dBm0 to -40dBm0 PCM level = -55dBm0 to -50dBm0	-0.2 -0.4 -1.2		0.2 0.4 1.2	dB dB dB
Receive Output Drive Level	V _{O (RX)}	$R_{L} = 600\Omega$	-2.5		2.5	V
Absolute Levels	V _{AL}	Nominal 0dBm0 level is 4dBm (600Ω) 0dBm0		1.2276		V _{rms}
Max Overload Level	V _{OL (MAX)}	Max overload level (3.17dBm0): KT8554B Max overload level (3.14dBm0): KT8557B		2.501		V _{PK}
Transmit Gain, Absolute	G _{V (ATX)}	Ta = 25 °C, V_{CC} = 5V, V_{BB} = -5V Input at GS _x = 0dBm0 at 1020Hz	-0.15		0.15	dB
Transmit Gain, Relative to $G_{_{V(ATX)}}$	G _{v (rtx)}	f = 16Hz f = 50Hz f = 60Hz f = 200Hz f = 300Hz - 3000Hz f = 3300Hz f = 3400Hz f = 4000Hz f = 4600Hz and up, measure response from 0Hz to 4000Hz	-1.8 -0.15 -0.35 -0.7		-40 -30 -26 -0.1 0.15 0.05 0 -14 -32	dB dB dB dB dB dB dB dB dB dB dB
Absolute Transmit Gain Variation with Temperature	$\Delta G_{V(ATX)} / \Delta T$	Ta = 0 °C to 70 °C			±0.1	dB
Absolute Transmit Gain Variation with Supply Voltage	$\Delta G_{V (ATX)} / \Delta V$	$V_{\rm CC}=5V~\pm5\%,~V_{\rm BB}=-5V~\pm5\%$			±0.05	dB
Transmit Gain Variations with Level	$\Delta G_{V(TXL)}$	Sinusoldal test method Reference level = - 10dBm0 VF_xI + = - 40dBm0 to + 3dBm0 VF_xI + = - 50dBm0 to - 40dBm0 VF_xI + = - 55dBm0 to - 50dBm0	- 0.2 - 0.4 - 1.2		0.2 0.4 1.2	dB dB dB

TRANSMISSION CHARACTERISTICS (Continued)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Envelope Delay Distortion with F	requency					
Receive Delay, Absolute	t _{D (ARX)}	f = 1600Hz		180	200	μs
		f = 500Hz - 1000Hz	-40	-25		μs
Receive Delay, Relative to $t_{\scriptscriptstyle D(\text{ARX})}$	t	f = 1000Hz - 1600Hz	-30	-20		μs
	t _{D (RRX)}	f = 1600Hz - 2600Hz		70	90	μs
		f = 2600Hz - 2800Hz		100	125	μs
		f = 2800Hz - 3000Hz		145	175	μs
Transmit Delay, Absolute	t _{D (ATX)}	f = 1600Hz		290	315	μs
		f = 500Hz - 600Hz		195	220	μs
		f = 600Hz - 800Hz		120	145	μs
		f = 800Hz - 1000Hz		50	75	μs
Transmit Delay, Relative to $t_{D(ATX)}$	t _{D (RTX)}	f = 1000Hz - 1600Hz		20	40	μs
		f = 1600Hz - 2600Hz		55	75	μs
		f = 2600Hz - 2800Hz		80	105	μs
		f = 2800Hz - 3000Hz		130	155	μs
Noise						
Receive Noise, C Message Weighted	N _{RXC}	PCM code equals alternating positive and negative zero, KT8554B		8	11	dBrnc0
Receive Noise, P Message Weighted	N _{RXP}	PCM code equals, positive zero, KT8557B		-82	-79	dBm0p
Transmit Noise, C Message Weighted	N _{TXC}	KT8554B		12	15	dBrnc0
Transmit Noise, P Message Weighted	N _{TXP}	KT8557B		74	-67	dBm0p
Noise, Single Frequency	N _{SF}	f = 0KHz to 100KHz, loop around measurement, VF _x I + = 0V _{ms}			-53	dBm0
Positive Power Supply Rejection, Transmit	PSRR (PTX)	$VF_xI + = 0V_{ms},$ $V_{CC} = 5.0V_{DC} + 100mV_{ms}$ f = 0KHz - 50KHz	40			dBC
Negative Power Supply Rejection, Transmit	PSRR (NTX)	$VF_xI += 0V_{rms},$ $V_{BB} = -5.0V_{DC} + 100mV_{rms}$ f = 0KHz - 50KHz	40			dBC
Positive Power Supply Rejection, Receive	PSRR (PRX)	$\begin{array}{l} \text{PCM code equals positive zero} \\ V_{\text{CC}} = 5.0V_{\text{DC}} + 100\text{mV}_{\text{rms}} \\ \text{f} = 0\text{Hz} - 4000\text{Hz} \\ \text{f} = 4\text{KHz} - 25\text{KHz} \\ \text{f} = 25\text{KHz} - 50\text{KHz} \end{array}$	40 40 36			dBC dB dB
Negative Power Supply Rejection, Receive	PSRR (NRX)	PCM code equals positive zero $V_{BB} = 5.0V_{DC} + 100mV_{rms}$ f = 0Hz - 4000Hz f = 4KHz - 25KHz f = 25KHz - 50KHz	40 40 36			dBC dB dB

TRANSMISSION CHARACTERISTICS (Continued)

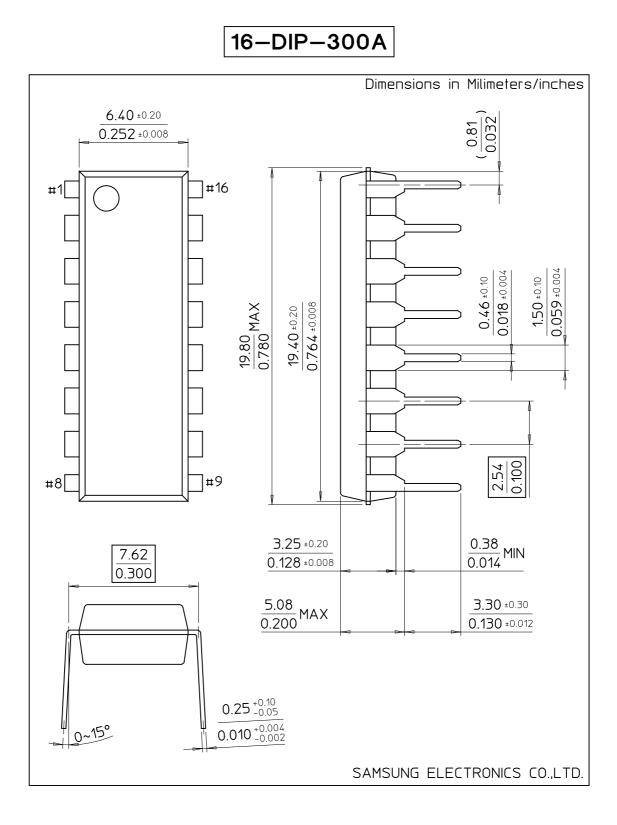
Characteristic	Symbol	Test Conditions	Min	typ	Max	Unit
		Loop around measurement, 0dBm0,				
		300Hz - 3400Hz input PCM applied to				
Spurious Out-of-Band Signals		D _R , Measure individual image				
at the Channel Output	SOS	signals at VF _R O				
		4600Hz - 760Hz			-32	dB
		7600Hz - 8400Hz			-40	dB
		8400Hz - 100,000Hz			-32	dB
Distortion						
		Sinusoidal test method				
		Level = 3.0dBm0	33			dBC
Signal to Total Distortion	THD_{TX}	= 0dBm0 to 30dBm0	26			dBC
Transmit or Receive	THD _{RX}	= -40dBm0 XMT	29			dBC
Half-Channel		RCV	30			dBC
		= -55dBm0 XMT	14			dBC
		RCV	15			dBC
Single Frequency Distortion,	THD SF (TX)				-46	dB
Transmit	SF (TX)				-10	uВ
Single Frequency Distortion,	THD _{SF (RX)}				-46	dB
Receive	TTD _{SF(RX)}				-10	uВ
		Loop around measurement,				
Intermodulation Distortion		$VF_xI + = -4dBm0$ to $-21dBm0$, two			-41	dB
	IWD	frequencies in the range				üD
		300Hz - 3400Hz				
Crosstalk						
Transmit to Receive Crosstalk,	CT _(TX-RX)	f = 300Hz - 3400Hz		-90	-75	dB
0dBm0 Transmit Level	(TX-RX)	D _R = Steady PCM code		-30	-15	uр
Receive to Transmit Crosstalk,	CT (RX-TX)	f = 300Hz - 3400Hz, VF _x I = 0V		-90	-70	dB
0dBm0 Receive Level	(RX-TX)	$1 - 300112 - 3400112, VI_XI = 0V$			(Note1)	


Note 1. $CT_{\scriptscriptstyle (RX\text{-}TX)}$ is measured with a - 40dBm0 activating signal applied at VF_XI +

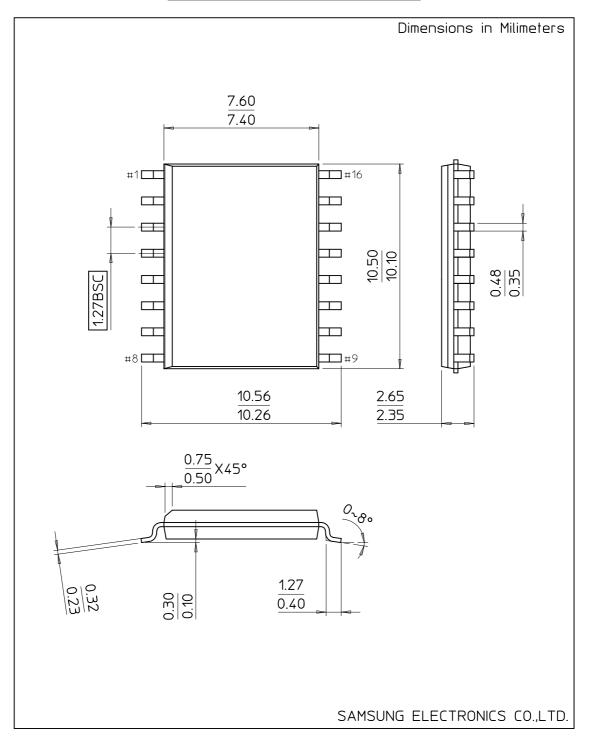
ENCODING FORMAT AT Dx OUTPUT

	mLaw KT8554B	A-Law KT8557B
V_{IN} (at GS _x) = + Full Scale	1000000	10101010
V_{IN} (at GS _x) = 0V	1111111	11010101
V _N (at CO ₂) = 00	0111111	01010101
V_{IN} (at GS_X) = - Full Scale	0000000	00101010

APPLICATION CIRCUIT



NOTE 1 : Supposing Desired Line Termination Impedance R_L = 600ohm It is 0dBm = 0.77459Vrms NOTE 2 : T_x Gain 20 log (R2/R1), R1 + R2 < 100Kohm, or The Correspondence of 1-CHIP CODEC 0dBm 0 = 4dBm.


SELECTION OF MASTER CLOCK FREQUENCY

BCLKR/CLKSEL	KT 8554	KT 8557
Clocked	1.536 / 1.544 MHz	2.048MHz
0	2.048 MHz	1.536 / 1.544 MHz
1 (or open)	1.536 / 1.544 MHz	2.048MHz

16-SOP-BD300-SG

