

Voltage Regulators

■ High current gain—500 minimum at 10 µA

Matching guaranteed over a OV to 45V collector-

Although designed primarily for high breakdown

voltage and exceptional dc characteristics, these

transistors have surprisingly good high-frequency performance. The gain-bandwidth product is 450 MHz with 1 mA collector current and 5V

collector-base voltage and 22 MHz with 10 μ A col-

lector current. Collector-base capacitance is only

Tight beta match-10% maximum

High breakdown voltage-to 60V

base voltage range.

1.3 pF at 5V.

LM114/LM114A/LM115/LM115A transistor pairs

general description

These devices contain a pair of junction-isolated NPN transistors fabricated on a single silicon substrate. This monolithic structure makes possible extremely-tight parameter matching at low cost. Further, advanced processing techniques yield exceptionally high current gains at low collector currents, virtual elimination of "popcorn noise," low leakages and improved long-term stability. Some of the major features of these pairs are indicated by the following specifications:

- Low offset voltage-0.5 mV maximum
- Low drift-2 μ V/°C maximum from -55°C to 125°C
-
- connection diagram

absolute maximum ratings

	LM114	LM115	
	LM114A	LM115A	
Collector-Base Voltage (BV _{CBO})	45V	60V	
Collector-Emitter Voltage (BV _{CER})	45V	60V	
Collector-Collector Voltage	45V	60V	
Emitter-Emitter Voltage	45V	60V	
Emitter-Base Voltage (BV _{EBO})	6V		
Collector Current	20 mA		
Total Power Dissipation (Note 1)	1.8W		
Operating Junction Temperature	–55°C to 150°C		
Storage Temperature	–65°C t	o 150°C	
Lead Temperature (soldering, 10 sec)	300°C		

Note 1: The maximum dissipation given is for a 25° C case temperature. For operation under other conditions, the device must be derated based on a 150° C maximum junction temperature and a thermal resistance of 70° C/W junction to case or 230° C/W junction to ambient.

LM114/LM114A/LM115/LM115A

electrical characteristics (Note 2)

	PARAMETER	CONDITIONS	MAXIMUM LIMITS				
			LM114	LM114A	LM115	LM115A	
	Offset Voltage	$1 \ \mu A \leq I_C \leq 100 \ \mu A$	2.0	0.5	2.0	0.5	mV
	Offset Current	I _C = 10 μA I _C = 1 μA	10	2.0 0.5	10	2.0 0.5	nA nA
	Bias Current	I _C = 10 μA I _C = 1 μA	40	20 3.0	40	40 6.0	nA nA
	Offset Voltage Change	$0V \le V_{CB} \le V_{max}$ $I_C = 10 \mu A$	1.5	0.2	2.0	0.3	mV
	Offset Current Change	$0V \le V_{CB} \le V_{max}$ $I_{C} = 10 \mu A$	4.0	1.0	4.0	1.0	nA
	Offset Voltage Drift	$-55^{\circ}C \le T_{A} \le 125^{\circ}C$ $I_{C} = 10 \mu A$	10	2.0	10	2.0	μV/°C
	Offset Current	$-55^{\circ}C \le T_A \le 125^{\circ}C$ I _C = 10 μ A	50	12	50	20	nA
	Bias Current	$-55^{\circ}C \le T_{A} \le 125^{\circ}C$ I _C = 10 μ A	150	60	150	150	nA
	Collector-Base Leakage Current	$V_{CB} = V_{max}$ $T_{A} = 25^{\circ}C$ $T_{A} = 125^{\circ}C$	50 50	10 10	50 50	10 10	pA nA
	Collector-Emitter Leakage Current	$V_{CE} = V_{max}, V_{EB} = 0$ $T_A = 25^{\circ}C$ $T_A = 125^{\circ}C$	200 200	50 50	200 200	50 50	pA nA
	Collector-Collector Leakage Current	$V_{CC} = V_{max}$ $T_A = 25^{\circ}C$ $T_A = 125^{\circ}C$	300 300	100 100	300 300	100 100	pA nA

Note 2: These specifications apply for T_A = 25°C and 0V \leq V_{CB} \leq V_{max}, unless otherwise specified. For the LM114 and LM114A, V_{max} = 30V. For the LM115 and LM115A, V_{max} = 45V.

