／VAXIM

15－Bit ADC with Parallel Interface

The MAX 135 is a CMOS 15 bit binary digital converter（ADC）Multi－slope integration provides low－noise and high－resolution conversions in less time low－noise and high－resolution conversions in less time at 16 conversions per second，but operates at up to 6 at 6 conthat rate The MAX135 uses Super LSBs with data times that rate．The MAX135 uses Super LSBs with data
averaging to achieve 18 －bit resolution．

Supply current is $125 \mu \mathrm{~A}$ maximum during normal opera－ tion and only 10uA maximum in sleep mode．Low con－ version noise allows tested operation at only 300 mV full scale（ $15 \mu \mathrm{~V}$ per LSB）．A simple 8 －bit parallel data bus and three control lines easily interface to all comrnon simplifies bipolar measurements．

High resolution and compact size make the MAX135 ideal for data loggers，numerical control systems，weigh scales，data－acquisition systems，and panel meters．The MAX 135 comes in 28－pin DIP and SO packages in both commercial and extended temperature grades．

ハレハメIノレI

15－Bit，Multi－Slope Integrating ADC
－ $15 \mu \mathrm{~V}$ Resolution at 16 Conv／Sec
－Low Supply Current
$125 \mu \mathrm{~A}$ Max（Normal Operation）
． 0.005% Accuracy at 16 Conv／Sec
3 Super Bits for 18－Bit Resolution
－Low Noise－Operates at 300 mV Full Scale
－Easy μ P Interface－8－Bit Parallel Data Bus
－$\pm 10 p A$ Input Leakage Current
Small 28－Pin DIP and SO Packages
Ordering Information

PART	TEMP．RANGE	PIN－PACKAGE
MAX 135CPI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Plastic DIP
MAX 135 CWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	lide SO
MAX135C／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice＊
MAX135EPI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Plastic DIP
MAX135EWI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Wide SO

Contact factory for dice specifications

	Pin	Config
TOPVIEW		
		$28{ }^{\mathrm{v}} \mathrm{v}$
		27 bufout
	MAXIM	$26.1 n t o u t$
	MAX135	25 INTN
		24 CREF－
		23 CREF＋
		22 REFF＋
		21 REF－
		20）AGND
		19 INLO
		18 Agnd
		17．INH
		16 V
		15 EOC
	DIP／So	

Maxim Integrated Products

15－Bit ADC with Parallel Interface

ELECTRICAL CHARACTERISTICS

REF $=0$ REF +545 mV RINT $=402 \mathrm{k} \Omega$ CINT $=0.0047 \mu \mathrm{~F} . \mathrm{CREF}=0.1 \mu \mathrm{~F}$,

15－Bit ADC with Parallel Interface

ELECTRICAL CHARACTERISTICS（continued）

$(V+=5 V, V-=-5 V, D G N D=A G N D=I N L O=R E F-=O V, R E F+=545 \mathrm{mV}, R I N T=402 \mathrm{k} \Omega, C I N T=0.0047 \mu F, C R E F=0.1 \mu \mathrm{~F}$, tK $=32768 \mathrm{~Hz}, 60 \mathrm{~Hz}$ mode， $\mathrm{T}_{\mathrm{A}}=$ TMN to TMAx unless otherwise noted．）

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
digital section						
	VOH	DO－D7，IOUT $=-1 \mathrm{~mA}$	3.5	4.3		V
Output High		DO－D7，IOUT $=-100 \mu \mathrm{~A}$	4.0	4.5		
		EOC，IOUT $=-100 \mu \mathrm{~A}$	4.0	0.2		
Output Low	Vol	D0－D7． LOUT $=1.6 \mathrm{~mA}$			0.4	V
		EOC，IOUT $=100 \mu \mathrm{~A}$			0.4	
Input High	VIH	Referred to DGND，$\overline{C S}, \overline{W R}, \mathrm{RD}$	2.4			V
Input Low	$\mathrm{V}_{\text {IL }}$	Referred to DGND，$\overline{C S}, \bar{W} \bar{R}, \overline{R D}$			0.8	V
Input Current	IIN	$\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \mathrm{A} \overline{\mathrm{D}}, \mathrm{DO}$－D7 when three－stated		± 10	± 500	nA
Input Capacitance	CIN	$\overline{\mathrm{C}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \mathrm{DO}-\mathrm{D7}$ when three－stated		5		pF

TIMING CHARACTERISTICS

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
CS to WR Setup Time	t1			0			ns
$\overline{\text { Wr }}$ Data－Setup Time	t2			200	<100		ns
$\overline{\text { WR Pulse Width }}$	t3			200	＜100		ns
Data Hold atter WR	14			0			ns
$\overline{C S}$ to RD Setup Time	15			0	－		ns
$\overline{\mathrm{CS}}$ to RD Hold Time	t6			0			ns
$\overline{\mathrm{RD}}$ to Data Valid	17			480	240		ns
Bus－Relinquish Time	t8			380	190		ns
$\overline{\text { WR }}$ to $\overline{\mathrm{RD}}$	t9			300			ns
RD to $\overline{W R}$	110			200			ns
Delay between Write Operations	111			500	＜250		ns

Note 1： 18 －bit resolution achieved by averaging multiple conversions
$\begin{array}{ll}\text { Note 2：} & \text { Max deviation from best straight lin } \\ \text { Note 3：} & \text { Guaranteed by design，not tested }\end{array}$
Note 4：Difference in reading for equal positive and negative inputs near full scale

15－Bit ADC with Parallel Interface

15－Bit ADC with Parallel Interface

Application Information

Figure 1 shows the basic MAX 135 application circuit．The

 component values are selected for 16 conversions pe second．Keep the analog lines and components away from the digital input／output（ $1 / \mathrm{O}$ ）lines to prevent capac itive coupling to the analog circuitry．Increasing Speed
Applications with greater conversion rates require differ－ ent components；the Components section describes how the correct values．Ground plan sheelding are essential for stable readings on faster con version rates．When operating at crystal frequencies specified in Table 1 that are greater than $32,768 \mathrm{~Hz}$ ，use either the 50 Hz or 60 Hz mode；however，the 50 Hz mode will improve performance due to a longer integration
period．When operating in 50 Hz mode，both the integrator capacitor and the reference voltage must be appropri－ ately selected．For fast conversion rates where resolution is not important，use fewer digits as a quick solution．If maximum resolution is important，a trailing average of the data will provide highest resolution．

Increasing Resolution

For applications where resolution is important and speed is not，achieve additional resolution by using bits LSB／2 SB LSB／8 found in the status register．When averaged，these bits can yield up to ± 18－bit resolutions For maximum resolution，use a trailing average of at leas 100 readings

Components

The MAX135 requires an integrator resistor（RINT）and capacitor（CINT），a reference capacitor（CREF），and a crystal．A $32,768 \mathrm{~Hz}$ crystal frequency is used to test the MAX135．The crystal frequency，reference voltage and integrator current dictate the values of RINT and CINT．

Integrator Resistor
The integrator resistor sets the maximum integrator out put current for the integrate phase．A $402 \mathrm{k} \Omega$ metal－tilm resistor is recommended for use with reference voltages between 345 mV and 655 mV ．Best Inearity is achieved when the integration current（IINT）not exceed $2.5 \mu \mathrm{~A}$ ．For other reference voltages，！t RINT as fol lows：
RINT $=\frac{\text { VREF }}{2.5 W A<1 N T}$
$\| \operatorname{NT}=\frac{\text { VREF }}{\text { RINT }}$

Figure 5．Analog Section Block Diagram

6 \qquad

15－Bit ADC with Parallel Interface

Integrator Capacito

The oscillator frequency integrator resistor and integra for capacitor set the maximum integrator output－voltag swing for full－scale reading．The voltage swing is about 3 V for a $402 \mathrm{k} \Omega$ integrator resistor and a 4.7 nF integrator capacitor when the clock frequency is $32,768 \mathrm{~Hz}$ ．If dif erent clock frequencies are used，select CINT using the following equations：

$$
\begin{aligned}
& \text { tINT }=\left(\frac{1}{\text { fosC }}\right) \times\left(\begin{array}{c}
545 \text { for } 60 \mathrm{~Hz} \\
\text { or } \\
655 \text { for } 50 \mathrm{~Hz}
\end{array}\right) \\
& \text { CINT }=\frac{\left.\left(V_{\text {IN(FS }}\right) / \text { RINT }\right) \times \text { tINT }}{3.5 \mathrm{~V}>V_{\text {SWING }}>1 \mathrm{~V}}
\end{aligned}
$$

The integrator capacitor＇s dielectric absorption directly affects integral nomlinearity．High－quality metal－film ca pacitors are recommended in the following order of pref rence．poyplar（ and int some integral nonlinearity．

Reference Capacito

The reference capacitor value must be small enough to fully charge from a discharged state on power－up in the fuly charge from a discharged state on power－up in the desired time，and large enough so the charge does not
droop excessively during a conversion．The reference droop excessively during a conversion．The reference For applications that recuire a physically smaller capac－ itor，the equation below will maintain CREF proportional－ ity．

$$
\mathrm{CREF}=\frac{0.0033}{\mathrm{f}_{\mathrm{OSC}}}
$$

Figure 6 MAX 135 Internal Oscillator Drive Circuitry

The reference capacitor must have low leakage，since it stores the reference voltage while floating during the deintegrate phase．Any leakage or charge loss during this phase changes the scale factor．Polypropylene polystyrene，polycarbe pacitorsare pocateal characteristics．

Crystal Frequency
The crystal frequency sets the conversion rate．Table 1 Tists the crystal frequencies and integrator capacitors for lists the crystal frequencies and integrator capacitors for 50 Hz and 60 Hz operation at particular conversion rates．
These crystal frequencies complete a conversion in an These crystal frequencies complete a conversion in an
integral number of line cycles．Figure 6 shows the internal oscillator drive circuitry used with external crystals．

Table 1．Crystal Frequencies and Integrator Capacitors for 50 Hz to 60 Hz Operation

Conv／ Sec a	$\mathbf{H z}$	CINT／60Hz（pF）	CINT／50Hz（pF）	\mathbf{R} $\mathbf{k} \mathbf{\Omega} \mathbf{2}$
16	32,768	4700	6800	402
32	65,536	2700	3300	402
48	98,304	1800	2000	402
64	131,072	1200	1500	402
80	163,840	1000	1200	402
96	196,608	820	1000	402

NOTE：CAPACITOR VALUES ARE FOR A 2.5 V INTEGRATOR SWING

Two manufactures of miniature quartz resonators are：
Micro Crystal
702 West Algonquin Road
Arlington Heights，Illinois 60005
Seiko Instruments USA Inc
290 West Lomita Boulevard
Torrance，California 90505

15－Bit ADC with Parallel Interface

Reference Voltage Selection

For 300 mV full scale，when the 60 Hz mode is selected，the reference voltage is 523 mV ．If 50 Hz is selected，the refer－ ence voltage is 629 mV for 300 mV full scale

Volts $/ L S B=\frac{V_{\text {IN（FS）}}}{20,000}$
VREF $=\begin{gathered}(545 \text { counts }) \times 64 \times \mathrm{V}_{\text {IN（FS）}} \\ 20,000\end{gathered}$ 20，000
or

VREF $=\frac{(655 \text { counts }) \times 64 \times V_{\text {（N（FS）})}}{20,000} 50 \mathrm{~Hz}$ operation
Note： $\mathrm{V}_{\text {IN（FS）}}=$ full－scale input voltage
The ICL8069 is a $1.25 \mathrm{~V} 50 \mu \mathrm{~A}$ supply current reference making it idealy suited for generating the MAX135＇s re erence．Figure 7 shows how 1.25 V can be divided for the desired reference voltage

Digital Interface

The MAX135 implements an 8－bit，bidirectional data bus with CHIP SELECT（CS），$\overline{\operatorname{READ}}(\overline{\mathrm{RD}})$ ，and WRITE （WR）．CS allows access to the I／O data bits and input register $\overline{\mathrm{DD}}$ sets the MAX 135 data I／O inand input register．RD sets the MAX 135 data I／O lines to

Initialize the ADC immediately after power－up to insure
correct operation

Figure 7．Dividing an ICL8069 to generate the MAX135＇s
reference voltage．
The MAX135 has four internal registers：the com mand inout register output register0 output register mand input register，output register O，output registe 1，and the output status register．Table 2 defines
their bit locations．Use WR to write to the command input register．Once the register bits RSO and RS input register．Once the register bits RSO and RS1
are set to the desired register address and the WR are set to the desired register address and the WR command is initiated，the designated register can be
read．When $\overline{R D}$ is low，the designated register data s available on the data bus．When RD is high，the outputs go three－state and all I／O output lines return to input lines

Table 2：MAX135 Register Map of Input and Output Data

		Data Bit							
		D7	D6	D5	D4	D3	D2	D1	D0
Command Input Register	1	Start Convert	50 Hz Mode	Sleep Mode	Read Zero	Don＇t Care	RSO	RS1	Don＇t Care
	0	Returns to 0 at EOC	60 Hz Mode	Run	Read IN HI	Don＇t Care	See Table 3		Don＇t Care
Output Register 0 RS1 $=0$, RS0 $=0$		B7	B6	B5	B4	B3	B2	B1	B0 LSB
Output Register 1 $R S 1=0, R S 0=1$	0	－Polarity + Polarity	B14	B13	B12	B11	B10	B9	B8
Output Status Register RS1 $=1$, RS0 $=0$	1	Collision	EOC	Integrating Input	Sleep	Always	$\frac{\operatorname{LSB}}{2}$	$\begin{aligned} & \text { Super } \\ & \text { LSBs } \end{aligned}$	
	0	No Collision	Converting	Not Integrating	Run			$\frac{\mathrm{LSB}}{4}$	$\begin{gathered} \text { LSB } \\ 8 \end{gathered}$

Table 3: Register Set-Bit Definitions

RS1	RS0	Definitions
0	0	Selects register 0; outputs data bits B0-B7
0	1	Selects register 1; outputs data bits B8-B14, polarity
1	0	Selects register 2; outputs status bits, LSB/8, LSB/4, LSB/2, CB, EOC
1	1	Invalid data

Input Register
Register Set Bits Data pins D1 and D2 (RS1 and RS0) in the command input egister determine the data to be read on the data bus. These bits select which register outputs data to the bus. Table 3 defines the bit values that determine the register in use.

Read-Zero Bit
The MAX135 performs a read-zero conversion on command - a calibration process that removes zero offset. The ead-zero bit, when set to 1, internally shorts the inputs; when a start-conversion command is given, the zero error is converted. Subtract the results from the standard
external measurement conversion when the read-zero conversion ends, If the read-zero bit is set to 0 the converter measures the voltage between IN HI and IN LO once a start bit is given.
An average of multiple read-zero measurements determines the most accurate read zero
Sleep Bit
With the sleep bit set to 1 and 1 written to D5, the low-power sleep mode starts when $\mathrm{EOC}=1$. In sleep mode, the supply current is typically under $5 \mu \mathrm{~A}$, the oscillator shuts down, and data can be read. When sleep mode is released, the analog circuitry needs time to stabilize before the next conversion starts. Accomplish this by writ ng a separate instruction to emerge from sleep moditing a star instructions writing a start instruction
$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
With a $32,768 \mathrm{~Hz}$ crystal, the $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ bit sets the integration period equal to one line cycle for $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ environments. When D 6 is set to 0 , the integrator count counts) When D6 is set to 1 the integrator integer multiple of $50 \mathrm{~Hz}(32768 \mathrm{~Hz} / 50 \mathrm{~Hz}=655$ counts) Achieve the highest AC (siection by ad usting the integra Achieve the hignest $A C$ rejection by adjusting the integra tion period for 50 Hz or 60 Hz .

Figure 8. Conversion Timing

15－Bit ADC with Parallel Interface

The start bit initiates a conversion when Start Bit comman the 1 in the command input register．The MAX135 immediately starts a conversion，stops at conversion end，and waits for the next start－bit command．Send a start instruction to initiate each conversion
To initiate a continuous data stream，write a separate start command for each conversion in one of three ways：
1．Wait longer than a known conversion time and write another start command
2．Poll either the EOC status register bit or the EOC line to determine conversion end and start time for the next conversion．EOC becomes 1 at conversion end at coun 0000 of the conversion counter（Figure 8 ）

3．Set the start bit to 1 betore conversion end．The anternal conversion counter is then checked for its count．If the count is 0000 （ $E O C=1$ ），a new conver－ sion starts and the conversion counter is set to 0001. The start bit resets to 0 after 5 clock cycles．The MAX135 will not check the start bit again until the conversion counter returns to a 0000 count．This means a start command can be given any time after the 0005 internal conversion count；the next conver－ sion starts when the counter returns to 0000

Output Registers
Register 0
Register 0 contains the low－byte（bits B0－B7）conversion data．New data is available after EOC goes high．Access register 0 by setting RSO and RS1 to 0 ．Output data is the sum of system offset（read zero）plus the results of the external input voltage measurement．

Register 1
Register 1 contains the high－byte（bits B8－B15）data．Data is in a twos－complement format，where the polarity bit is a 1 for negative polarity data．Access register 1 by setting control bits $\mathrm{RSO}=1$ and $\mathrm{RS} 1=0$ when writing to the command input register．

Status Register
LSB／2，LSB／4，LSB／8 Bits（Super LSBs） The LSB／2，LSB／4，and LSB／8 bits enhance resolution．At The LSB／2，LSB／4，and LSB／8 bits enhance resolution．At from the status register．When using these three bits， 18 bits of resolution are available．When using the 17 bits plus sign，average the readings to stabilize the result．

Integrate Bit
The integrate（INT）bit is set to 1 at the beginning of an integration and becomes 0 at the end．Poll INT to deter－ mine the earliest time the analog input can be changed without affecting the conversion．

End－of－Conversion Bit

The end－of－conversion（EOC）bit signals conversion sta tus．If EOC is 1 ，the conversion is complete and the ADC waits in zero－integrate mode at count 0000 for the nex start instruction．A conversion cycle has 1820 counts
EOC becomes 1 at count 0000 and 0 at count 0001 ．

Collision Bit

The colision bit warns the microprocessor that the register＇s data was changed during the read cycle．Onc the status register is read，the collision bit resets to 0 Colisions do not occur if a conversion＇s read cycle is completed before the next conversion begins．

Analog Section

Sequence Counter and Results Counter

A binary sequence counter controls the sequencing or timing of the conversion phases．In integrate phase，both stant and stop occur at presel counts．The deintegrate phases start al predetermined counts，and terminate when the comparator detects zero crossing at the inte grator output．
The results counter accumulates counts during al deintegrate phases．It is an up／down binary counter，with the deintegrate polarity determining count direction．In the first deintegrate phase，the results counter counts by 64 s ．Since the second deintegrate phase deintegrates a residuai voltage multiplied by 8 ，the results counter incre ments or decrements by 8 s during this phase．It incre ments or decrements by is during the third deintegrate phase，and by loss during the fouth deintegrate phase The results counter＇s contents transters to the results register at each conversion end

Differential Reference inputs

The reference inputs accept voltages anywhere within the converter＇s power－supply voltage range．
The main source of rollover error is common－mode volt－ age，which is caused by the reference capacitor losing or gaining charge to stray capac tance．A positive signal with a large common－mode voltage can cause the refer ence capacitor to gain charge（increase voltage）．In contrast，the reference capacitor will lose charge（de crease voltage）when deintegrating a negative inpu signal．The rollover error is a direct result of the difference in reference for positive or negative input voltages．Use an optimum reference capacitor to hold rollover erro under one－half count for worst－case conditions（see Com ponents section）．A common－mode voltage near or a AGND minimizes rollover error caused by these sources

15－Bit ADC with Parallel Interface

Differential Input

Acceptable differential input voltages are dictated by the input amplifer＇s common－mode range（specifically from 1.5 V below the positive supply to 1.5 V above the negative supply）．For optimum performance，the input voltage at IN HI and IN LO should not come within 2 V of either the positive or negative supply．Do not saturate the integrator output，since the integrator also swings with the common－ mode voltage．
For this section of an explanation of conversion phases refer to figures 5 ，and 8

Integrate Phase

The MAX135 integrates the input signal by connecting the noninverting input of the integrator to INLO and the buffer input to IN HI ．The integration period is 545 counts for 60 Hz mode and 655 counts for 50 Hz mode．

Deintegrate Phase
The voltage polarity on the integrator capacitor at the end of integrate phase determines the polarity of the first of integrate phase determines the polarity of the first
deintegration phase．The first deintegrate phase ends deintegration phase．The first deintegrate phase ends
when the comparator detects the integrator capacitor discharge．The MAX135 then goes into a rest phase， where both the buffer input and the integrator＇s noninvert－ ing input connect to AGND，integrating the system offset． Near the end of the maximum allowable deintegration period，the integrator capacitor＇s voltage polarity is again sampled resulting in either a positive or negative deintegrate cycle．

Rest Phase
A rest phase follows each deintegrate phase．Rest phase starts when the integrator crosses zero and ends when the maximum count for that deintegrate phase is reached

Times－Eight Phase
When a zero crossing is detected at the end of the deintegrate phase，deintegration continues until the next clock cycle．This causes the integrator to overshoot zec crossing slightly leaving a small residual voltage on the integrator capacitor．The times－eight（ X 8 ）phase inverts and multiplies this residual by a factor of 8 ．

Second Deintegrate Phase
The second deintegrate phase deintegrates the residual voltage on the integrator capacitor that has been hrough the Xo phase．Since the voltage across the ine deintegration corresponds to 18 of one clock cycle dur－ ing the first deintegration

Additional Times－Eight and Deintegrate Phases At the end of the second and third deintegrate phases the device $\mathrm{X8}$ multiplies the residual voltage left on the integrator capacitor．A deintegration occurs after each of these X8 multiplications，resulting in a second，third and fourth deintegrate phase．Each time the integrato capacitor＇s residual voltage is multiplied by 8 ，the follow ing deintegrate phase has 8 X finer resolution

Zero－Integrate Phase
The zero－integrate phase zeros out the integrator to pre pare for the next integration（Figure 8）．This phase occurs at the beginning and end of each conversion．At power－ up or in the hold mode prior to a conversion，the MAX135 continues to zero integrate until a conversion starts When a conversion starts in 60 Hz mode，another 11 clocks or zero in gate are completed berea conver integrate is performed before the conversion starts A additional 20 clocks of zero integrate occur at each conversion end．

Chip Topography

