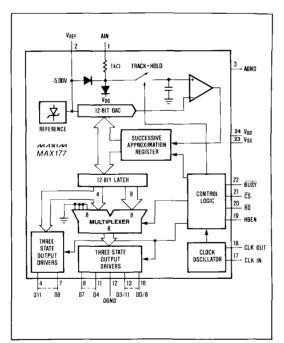


CMOS 10-Bit A/D Converter with Track-and-Hold

General Description

The MAX177 is a complete CMOS sampling 10-bit analog-to-digital converter (ADC) that combines an on-chip track-and-hold and voltage reference along with high conversion speed and low power consumption. A conversion time of 8.33 μ s includes settling time for the track-and-hold. An internal buried zener reference provides low drift with low noise.


The MAX177 accepts -2.5V to +2.5V inputs. External components are limited to only decoupling capacitors for the power supply and reference voltages. On-chip clock circuitry can either be driven from an external clock source or a crystal.

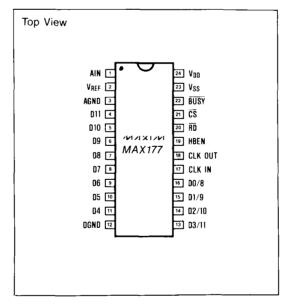
The MAX177 employs a standard microprocessor interface. Three-state data outputs can be configured for 8- or 12-bit data buses. Data access and bus release timing specs are compatible with most popular microprocessors without resorting to wait states

Applications

Digital Signal Processing (DSP) Audio and Telecom Processing High Accuracy Process Control High Speed Data Acquisition

Functional Diagram

Features


- 12-Bit Resolution and 10-Bit Linearity
- 8.33µs Conversion Time
- Internal Analog Track-Hold
- 6MHz Full Power Bandwidth
- On-Chip ±40ppm/°C Voltage Reference
- High Input Resistance (500M Ω)
- 100ns Data Access Time
- 180mW (Max) Power Consumption
- ♦ 24 Lead Narrow DIP and Wide SO Packages

Ordering Information

PART	TEMP. RANGE	PACKAGE*	ERROR
MAX177CNG	0°C to +70°C	Plastic DIP	±1 LSB
MAX177CWG	0°C to +70°C	Wide SO	±1 LSB
MAX177C/D	0°C to +70°C	Dice**	±1 LSB
MAX177ENG	-40°C to +85°C	Plastic DIP	±1 LSB
MAX177EWG	-40°C to +85°C	Wide SO	±1 LSB
MAX177MRG	-55°C to +125°C	CERDIP	±1 LSB

- * All devices 24 lead packages
 ** Consult factory for dice specifications.

Pin Configuration

/VI/IXI/VI

Maxim Integrated Products 1

ered trademark of Maxim Integrated Products.

3

CMOS 10-Bit A/D Converter with Track-and-Hold

ELECTRICAL CHARACTERISTICS (continued) ($V_{DO} = +5V \pm 5\%$, $V_{SS} = -11.4V$ to -15.75V, Slow Memory Mode, $T_A = T_{MIN}$ to T_{MAX} , $f_{CLK} = 1.5MHz$ unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
LOGIC INPUTS	•			•			
Input Low Voltage	VIL	CS, RD, HBEN,	CLK IN			0.8	V
Input High Voltage	V _{IH}	CS, RD, HBEN,	CLK IN	2.4			V
Input Capacitance (Note 4)	CIN	CS, RD, HBEN,	CLK IN			10	pF
Input Current	I _{IN}	V _{IN} = 0V to V _{DD}				10 20	μΑ
LOGIC OUTPUTS		•					
Output Low Voltage	V _{OL}	D11-D0/8, BUSY I _{SINK} = 1.6mA	D11-D0/8, BUSY, CLK OUT I _{SINK} = 1.6mA			0.4	V
Output High Voltage	V _{OH}	D11-D0/8, BUSY, CLK OUT I _{SOURCE} = 200 <i>μ</i> A		4			V
Three-State Leakage Current	ار	D11-D0/8, V _{OUT} = 0V to V _{DD}				±10	μΑ
Three-State Output Capacitance (Note 4)	co	, , , ,				15	pF
POWER REQUIREMENTS							
Postive Supply Voltage	V _{DD}	±5% For Specif	ied Performance		5		V
Negative Supply Voltage	V _{ss}	±5% For Specif	ied Performance	-12		-15	٧
Positive Supply Rejection		FS Change, V _{SS} = -15V or -12V V _{DD} = 4.75 to 5.25V			±0.01		%
Negative Supply Rejection		FS Change, V _{DD} = 5V V _{SS} = -14.24 to -15.75V V _{SS} = -11.4 to -12.6V			±0.01		%
Positive Supply Current	I _{DD}	$\overline{CS} = \overline{RD} = V_{DD}$, AIN = 5V			4	6	mA
Negative Supply Current	I _{ss}	CS = RD = V _{DD} ,	AIN = 5V		7	10	mA
Power Dissipation		V _{DD} = +5V, V _{SS} =	-12V		104	150	mW

- Note 1: Typical change over temp is ±1mV.

 Note 2: Ideal last code transition = FS -1.8mV LSB, adjusted for offset.

 Note 3: Full Scale Tempco = dFS/dT, where dFS is full scale change from T_A = 25°C to T_{MIN} or T_{MAX}.

 Note 4: Guaranteed by design, not subject to test.

 Note 5: V_{REF} Tempco = dV_{REF}/dT, where dV_{REF} is reference voltage change from T_A = 25°C to T_{MIN}T_{MAX}.

 Note 6: All input control signals are specified with t_r = t_f = 5ns (10% to 90% of +5V) and timed from a voltage level of +1.6V.

 Note 7: This specification is 100% production tested.

 Note 8: t₃ and t₆ are measured with the load circuits of Figure 1 and defined as the time required for an output to cross 0.8V or 2.4V
- Note 9: t_7 is defined as the time required for the data line to change 0.5V when loaded with the circuits of Figure 2.

For additional information on using the MAX177, please refer to MAX163/164/167 data sheet.

/VI/IXI/VI _			
/VI/1 ~ I/VI	 	 	

CMOS 10-Bit A/D Converter with Track-and-Hold

ELECTRICAL CHARACTERISTICS (continued) $(V_{DD} = +5V \pm 5\%, V_{SS} = -11.4V \text{ to } -15.75V, \text{ Slow Memory Mode, } T_A = T_{MIN} \text{ to } T_{MAX}, f_{CLK} = 1.5MHz \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
LOGIC INPUTS	_						•
Input Low Voltage	VIL	CS, RD, HBEN,	CLK IN			0.8	V
Input High Voltage	V _{IH}	CS, RD, HBEN,	CLK IN	2.4			V
Input Capacitance (Note 4)	CIN	CS, RD, HBEN,	CS, RD, HBEN, CLK IN			10	pF
Input Current	I _{IN}	V _{IN} = 0V to V _{DD} CS, RD, HBEN CLK IN				10 20	μΑ
LOGIC OUTPUTS							
Output Low Voltage	V _{OL}	D11-D0/8, BUSY I _{SINK} = 1.6mA	D11-D0/8, BUSY, CLK OUT SINK = 1.6mA			0.4	V
Output High Voltage	V _{OH}	D11-D0/8, BUS\ I _{SOURCE} = 200μΑ	D11-D0/8, BUSY, CLK OUT I _{SOURCE} = 200 <i>µ</i> A				V
Three-State Leakage Current	ار		D11-D0/8, V _{OUT} = 0V to V _{DD}			±10	μΑ
Three-State Output Capacitance (Note 4)	co					15	pF
POWER REQUIREMENTS	•						
Postive Supply Voltage	V _{DD}	±5% For Specif	ied Performance		5		V
Negative Supply Voltage	V _{SS}	±5% For Specif	ied Performance	-12		-15	V
Positive Supply Rejection		FS Change, V _{SS} V _{DD} = 4.75 to 5.2	FS Change, V _{SS} = -15V or -12V V _{DD} = 4.75 to 5.25V		±0.01		%
Negative Supply Rejection		FS Change, $V_{DD} = 5V$ $V_{SS} = -14.24$ to $-15.75V$ $V_{SS} = -11.4$ to $-12.6V$			±0.01		%
Positive Supply Current	I _{DD}	CS = RD = V _{DD} , AIN = 5V			4	6	mA
Negative Supply Current	I _{ss}	CS = RD = V _{DD} , AIN = 5V			7	10	mA
Power Dissipation		V _{DD} = +5V, V _{SS} =	-12V		104	150	mW

- Note 1: Typical change over temp is ±1mV.

 Note 2: Ideal last code transition = FS -1.8mV LSB, adjusted for offset.

 Note 3: Full Scale Tempco = dFS/dT, where dFS is full scale change from T_A = 25°C to T_{MIN} or T_{MAX}.

 Note 4: Guaranteed by design, not subject to test.

 Note 5: V_{REF} Tempco = dV_{REF}/dT, where dV_{REF} is reference voltage change from T_A = 25°C to T_{MIN}T_{MAX}.

 Note 6: All input control signals are specified with t_f = t_f = 5ns (10% to 90% of +5V) and timed from a voltage level of +1.6V.

 Note 7: This specification is 100% production tested.
- Note 8: t₃ and t₆ are measured with the load circuits of Figure 1 and defined as the time required for an output to cross 0.8V or 2.4V.
- Note 9: 17 is defined as the time required for the data line to change 0.5V when loaded with the circuits of Figure 2.

For additional information on using the MAX177, please refer to MAX163/164/167 data sheet.

/VI/IXI/VI	 	3
, , , , , , , , , , , , , , , , , , ,	 	

CMOS 10-Bit A/D Converter with Track-and-Hold

TIMING CHARACTERISTICS ($V_{DD} = +5V$, $V_{SS} = -12V$ or -15V, $V_{A} = V_{MIN}$ to V_{MAX} , Note 6, specifications in bold type are 100% tested, others are guaranteed by design, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		A = 25	°C MAX	MAX1 MIN	77C/E MAX	MAX MIN	177M MAX	UNITS
CS to RD Setup Time	t ₁		0			0		0		ns
RD to BUSY Delay (Note 7)	t ₂	CL = 50pF		80	170		220		260	ns
Data Access Time (Notes 7, 8)	t ₃	CL = 100pF		50	100		130		150	ns
RD Pulse Width	t ₄		100			130		150	-	ns
CS to RD Hold Time	t ₅		0			0		0		ns
Data Setup Time After BUSY (Notes 7, 8)	t ₆			40	80		105		120	ns
Bus Relinquish Time (Notes 7, 9)	t ₇			30	50		65		75	ns
HBEN to RD Setup Time	t ₈		0			0		0		ns
HBEN to RD Hold Time	t ₉		0			0		0		ns
Delay Between READ Operations	t ₁₀		200			200		200		ns
Delay Between Conversions	t ₁₁		1			1		1		μs
Aperture Delay	t ₁₂	Jitter < 50ps		25						ns

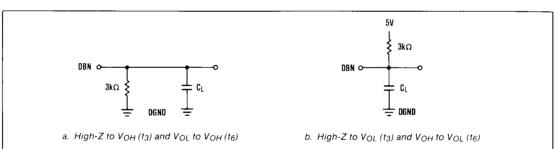


Figure 1. Load Circuits for Access Time

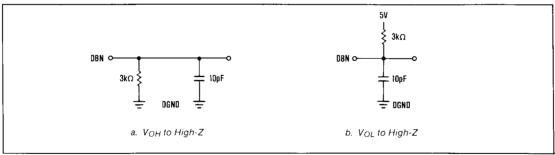


Figure 2. Load Circuits for Bus Relinquish Time

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.

Maxim reserves the right to change the circuitry and specifications without notice at any time.