2nd-Order Continuous Lowpass Filters

The MAX270/MAX271 are digitally-programmed, dual second-order continuous-time lowpass filters. Their typical dynamic range of 96 dB surpasses most switched capacitor filters which require additional filtering to remove clock noise. The MAX270/MAX271 are ideal for anti-aliasing and DAC smoothing applications and can be cascaded for higher-order responses.
The two filter sections are independently programmable by either microprocessor ($\mu \mathrm{P}$) control or pin strapping. Cutoff frequencies in the 1 kHz to 25 kHz range can be selected.

The MAX270 has an on-board, uncommitted op amp, while the MAX271 has an internal track-and-hold (T/H).

Applicatlons
Lowpass Filtering
Anti-Aliasing Filter
Output Smoothing
Low-Noise Applications
Anti-Aliasing and Track-and-Hold (MAX271)

Typical Operating Circult

Pin Configurations
TOPVIEW

DIP/SO

MAX271 configuration on page 15

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filters

ABSOLUTE MAXIMUM RATINGS

$V+$ to V -

$V+$ to GND
$V-$ to GND
V - to GND
Input Voltage to GND, Any Input Pin
Duration of Output Short Circuit to
$-0.3 V,+17 V$
... V- $-0.3 \mathrm{~V}, \mathrm{~V}_{+}+0.3 \mathrm{~V}$
MAX270:
Plastic DIP (derate $8 \mathrm{~mW} / \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 640 mW
Wide SO (derate $10 \mathrm{~mW} / \mathrm{C}^{\mathrm{C}}$ above $+70^{\circ} \mathrm{C}$) 800 mW CERDIP (derate $11.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 889 mW

MAX271:
 Stresses beyond those listed under 'Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	CONDITIONS		MNN	TYP	MAX	UNITS
FILTER CHARACTERISTICS						
Operating Frequency Range	(Note 1)		2			MHz
Programmed Cutoff Frequency (fc) Range				1-25		kHz
Programmed Cutoff Frequency Error	fc code $=53$ (2.536kHz typ)		± 2.9			\%
	$\mathrm{fc}^{\text {c code }}=127(25 \mathrm{kHz}$ typ)		± 9.5			
Filter Gain	fc code $=0$ (1 kHz typ), TA = TMIN to TMAX	$\mathrm{flN}=1 \mathrm{kHz}$	-3.6		-2.4	dB
		$\mathrm{fln}=8 \mathrm{kHz}$			-33	
	fc code $=127$ (25 kHz typ) ,$T_{A}=T_{M I N} \text { to } T_{M A X}$	$\mathrm{fin}=25 \mathrm{kHz}$	-6		-0.5	
		$\mathrm{fiN}=200 \mathrm{kHz}$		-34		
Maximum Gain (Peaking)	fc code $=0$ (1 kHz typ)				0.15	dB
	fc code $=127$ (25 kHz typ)		0.15			
Wideband Noise	50 Hz to 50 kHz Bandwidth	fc code $=0$ (1 kHz typ)	12			$\mu \mathrm{V}$ RMS
		fic code $=127$ (25kHz typ)	38			
DC CHARACTERISTICS						
DC Output Signal Swing OUTA, OUTB, OP OUT (MAX270) OUTA, OUTB, T/H OUT (MAX271)	$\begin{aligned} & \mathrm{R}_{L O A D}=5 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=\mathrm{T}_{\text {MIN }} \text { to } T_{M A X} \end{aligned}$		-3		3	V
Offset Voltage at Outputs OUTA, OUTB, OP OUT (MAX270) OUTA, OUTB (MAX271)		'	-2		2	mV
DC Input Leakage Current INA, INB (MAX270) INA, INB (MAX271)	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		-1		1	$\mu \mathrm{A}$

\qquad

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

PARAMETER	CONDITIONS	MiN	TYP	Max	UNTTS
DYNAMC FILTER CHARACTERISTICS - MAX270					
Total Harmonic Distortion (THD)	fc code $=44$ (2.01 kHz typ), $\mathrm{V} \mathrm{N}=3.5 \mathrm{~V}_{\mathrm{p} \text {-p }}$ at 390.625 Hz (Notes 2, 3)			-70	dB
Signal/(Noise + Distortion) (SINAD)			73		
Spurious-Free Dynamic Range (SFDR)		70			
UNCOMAMTTED AMPLIFIER - MAX270					
Slew Rate			1.2		V/us
Bandwidth			2		MHz
TRACK-AND-HOLD - MAX271					
Hold Settling Time	To 0.1\% (Note 4)		500		ns
Acquisition Time	To 0.1\% (Note 5)		1.8		$\mu \mathrm{s}$
Hold Step			1		mV
Droop Rate	$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		30		$\mu \mathrm{V} / \mu \mathrm{s}$
Offset Voltage at T/H OUT	Includes filter offset	-6		6	mV
T/H OUT Disabled Output Leakage Current	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}, \overline{\mathrm{T}} / \mathrm{H}=0 \mathrm{~V}$ (Track Mode)	-10		10	$\mu \mathrm{A}$
Total Harmonic Distortion (THD)	fc code $=44(2.01 \mathrm{kHz}$ typ) $. \mathrm{V} / \mathrm{N}=3.5 \mathrm{~V}$ p-p at 390.625 Hz , Sampling rate $=50 \mathrm{kHz}$ (Notes 2, 6, 7)			-70	dB
Spurious-Free Dynamic Range (SFDR)		70			
DHGITAL MPUTS					
Digital Input High Voltage	$T_{A}=T_{\text {MIN }}$ to $T_{\text {max }}$ (Note 8)	2.4			V
Digital Input Low Voltage				0.8	
Digital Input Current	$T_{A}=T_{\text {min }}$ to $T_{\text {max }}$ Digital input held at $\pm 5 \mathrm{~V}$, includes MODE (MAX271) (Note 8)	-1		1	$\mu \mathrm{A}$
POWER REQUIREMENTS					
Supply Voltage Range			$\begin{gathered} \pm 2.375 \\ \text { to } \pm 8 \end{gathered}$		V
Supply Current	$\mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to TMAX (Note 9)			6.5	mA
Shutdown Supply Current	$\mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {Max }}$ (Note 10)			15	$\mu \mathrm{A}$
Power-Supply Rejection Ratio (PSRR) at 1 kHz	fc code $=0(1 \mathrm{kHz}$ typ $), \mathrm{V}+=5 \mathrm{VDC}+100 \mathrm{mVp}-\mathrm{p}$ at 1 kHz		30		dB

Note 1: All internal amplifiers limited to 2 MHz bandwidth
Note 2: Only filter A tested for these parameters
Note 3: Spurious-Free Dynamic Range is the ratio of the fundamental to the largest of any harmonic or noise spur in dB
Note 4: Includes T/H propagation delays. With $5 \mathrm{k} \Omega$, parallel 100 pF load
Note 5: +2 V input step settling 0.1% with $5 \mathrm{k} \Omega$ parallel 100 pF load.
Note 6: \bar{T} / H pin toggled at sampling rate, 50% duty cycle.
Note 7: THD and SFDR specifications for T / H include contributions from filter
Note 8: Digital pins include $\overline{S H D N}, \overline{W R}, \overline{C S}, A O, D O-D 6$ (MAX270) and $\overline{S H D N}, T / H A \bar{B}, \overline{W R}, T / H E N, \overline{C S}, A O, A 1, D 0-D 6, \bar{T} / H$ (MAX271)
Note 9: Input of uncommitted op amp floating with a $5 \mathrm{k} \Omega$ feedback resistor from input to output
Note 10: $\overline{W R}, \overline{C S}, A 0, D O-D 6$ heid at $+5 V ; \overline{S H D N}=0 V$ (MAX270). WR, $\overline{C S}, A 0, A 1, D 0-D 6, \bar{T} H, T / H A / B, T / H, ~ M O D E ~ h e l d ~ a t ~+5 V ~$ $\overline{S H D N}=O V($ MAX271 $)$

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filters

TIMING CHARACTERISTICS (Figure 2)

$\left(\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \cdot \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

PARAMETER	SYMBOL	CONDITIONS	MNM	TYP	MAX	UNITS
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ Setup	tws				0	ns
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ Hold	twh				0	ns
$\overline{\text { WR Pulse Width }}$	twv		100			ns
Address-Setup Time	tas		30			ns
Address-Hold Time	tan		10			ns
Data-Setup Time	tds		30			ns
Data-Hold Time	toh		10			ns

Note 11: All input control signals specified with $\mathrm{tr}_{\mathrm{r}}=\mathrm{tf}=5 \mathrm{~ns}(10 \%$ to 90% of $+5 \mathrm{~V})$ and timed from a +1.6 V voltage level.
\qquad

4 \qquad

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filters

Typical Operating Characteristics (continued)

FLLTER TOTAL HARMONAC DISTORTION + NOISE vs. INPUTT FREQUENCY			
$\underset{(H z)}{f(H z}$	$\begin{aligned} & \text { ic } \\ & \text { Code } \end{aligned}$	Ic (Hz) (Тур)	THD + NOSE (dB)
190	0	1k	-78
390	44	2.01k	-73
1367	100	7.01k	-67
4875	127	25k	-66

MAX271 FILTER + TRACK-AND-HOLD
SPUR1OUS-FREE DYMAMC RANGE
vs. INPUTT FREQUENCY

fN (Hz)	fc Cods	fc (Hz) (TYP)	SFDR (dB)
195	0	1 k	73.5
781	72	4.01 k	69.5
1562.5	105	8.08 k	66
3906	124	19.4 k	61.5

MAX271 FILTER + TRACK-AND-HOLD
SPURIOUS-FREE DYMAMICRANGE

$V_{+}=5 \mathrm{~V}, V-=-5 V_{i} V_{N}=3.5 V_{p-R}$
ITH SWITCHED AT 50% DUTY CYCLE: İ $/$ SWITCHED AT 50% DUTY CYCLE;

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filters

Detalled Description

Figures 1a, 1b, and 1c show the MAX270MAX271 functional diagrams. Both the MAX270 and MAX271 contain two independent, second-order, Sallen-Key, lowpass filter sections, A and B , to provide a frequency vs. gain rolloff of approximately $40 \mathrm{~dB} / \mathrm{dec}$ ade. These are not switched-capacitor filters, but have a continuous-time design similar to discrete active filters built around op amps. The MAX270/MAX271 eliminate clock noise and aliasing problems which limit low-noise performance of switched-capacitor filters; resulting dynamic range is over 96 dB .
Each filter section contains two banks of programmable capacitors, controlled by an internal 7-bit memory, which set filter cutoff frequencies (fc) from 1 kHz to 25 kHz . The filters provide two program modes. In $\mu \mathrm{P}$ mode, cutoff frequencies are programmed by writing 7 -bit data to one of two memory addresses (one for each filter section) Alternately, a pin-strap programming mode programs both filter sections simultaneously. In this mode, both memory latches are transparent (not addressable), and data pins D0-D6 may be pin strapped (hardwired) to set a common fc for both filter sections.

The filters are trimmed at the wafer level, setting Q for a maximum of 0.15 dB passband peaking for fc programmed to 1 kHz . Maximum passband peaking at other codes is typically less than 0.15 dB . Filter Q is not user-programmable.
The MAX270 includes an uncommitted op amp (noninverting input grounded); the MAX271 has an on-chip T/H that tracks and holds the output of either filter section (selectable). The held output is provided at T / H OUT. T/H functions are controlled by writing control bits to internal registers (in $\mu \mathrm{P}$ mode) or by control pins directly (in pin-strap mode).
The MAX270 and MAX271 provide a low quiescent current shutdown mode controlled by the SHDN pin, which turns off internal amplifiers and floats all outputs, reducing quiescent operating current to less than $15 \mu \mathrm{~A}$. When the MAX271 is in $\mu \mathrm{P}$ mode, shutdown mode is selected by writing control bits to memory (the SHDN pin is disabled).

PIN:	NAME	FUNCTION
1	OP OUT	Uncommitted Op-Amp Output
2	V_{+}	Positive Supply Voltage
3	OUTA	Filter A Output
4	SHDN	SHUTDOWN Control. Low level floats OUTA, OUTB, and OP OUT and places device into shutdown mode.
5	INA	Filter A Input
6	V -	Negative Supply Voltage
7	INB	Filter B input
8	OUTB	Filter B Output
9	GND	Ground
10	$\overline{W R}$	WRITE Control Input. A low level writes data DO-D6 to program memory addressed by AO. High level latches data.
11	$\overline{\mathrm{CS}}$	CHIP SELECT Input. Must be low for $\bar{W} \bar{R}$ input to be recognized.
12	AO	Three-Level Address Inputlogic high: addresses filter A logic low: addresses filter B connect to V -: pin-strap mode
13-19	D0-06	7-Bit Data inputs. Allows programming of 128 cutoff frequencies in a 1 kHz to 25 kHz range.
20	OPIN	Uncommitted Op-Amp Input

Note: All digital input levels are TTL and CMOS compatible, unless otherwise stated
MAX271 Pin Description on next page

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filters

Pin Descriptions (continued)			
PIN:	name	FUNCTION, μ P MODE (MODE = GND OR V-)	FUNCTION, PWLSTRAP MODE (MODE $=\mathrm{V}_{+}$)
1	T/H OUT	Track-and-Hold Output	
2	V+	Positive Supply Voltage	
3	OUTA	Filter A Signal Output	
4	$\overline{\text { SHDN }}$	x	SHUTDOWN Control. A low level floats outputs and places device into shutdown mode.
5	INA	Filter A Signal Input	
6	V-	Negative Supply Voltage	
7	INB	Filter B Signal Input	
8	MODE	Selects μ P mode when tied to GND or V- and pin-stra	mode when connected to $\mathrm{V}+$.
9	OUTB	Filter B Signal Output	
10	GND	Ground	
11	$T / H A \sqrt{B}$	X	Track-and-Hold Input Control. A high/low level internally connects OUTA/OUTB to input of Track-and-Hold.
12	WR	WRITE Control Input. A low level wites data BO-D6 to program memory addressed by A1, A0 (or performs function as described for address inputs). High level latches data.	X
13	T/HEN	X	Track-and-Hold Output Control. Low level floats T/H OUT. Connect pin high for normal operation.
14	$\overline{C S}$	$\overline{\text { CHIP SELECT }}$ Input. Must be low for $\overline{\text { WR }}$ input to be recognized.	X
15, 16	A1, A0	Address and $\mu \mathrm{P}$ Control Inputs. 0,0 Programs fc , filter A . 0. 1 Programs fc_{f}, filter B. 1, 0 Controls T / H functions: DO performs T/H EN pin function. D1 performs $T / H A / B$ pin function. 1, 1 Controls device shutdown: DO performs SHDN pin function. Note: The WR pin must be strobed low to initiate a program/function (Figure 2).	x
17-23	D0-D6	7 -bit Data Inputs. Allows programming of 128 cutoff frequencies (also performs control functions as described above).	7-bit Data Inputs. Program memory latches are transparent in this mode. Connect pins high or low to program fiters A and B simultaneously to the same fc.
24	T/H	Track-and-Hold Control. Low level causes T/H OUT to track selected filter output. Filter output level held at T/H OUT synchronous with \bar{T} / H rising transition.	

$X=$ Pin has no function in this mode.
Note: All digital input levels are Π L and CMOS compatible, unless otherwise stated.

Digitally-Programmed, Dual

 2nd-Order Continuous Lowpass FiltersMAX270/MAX271

Figure 1a. MAX270 Block Diagram

Figure 1b. MAX271 Block Diagram - μ P Mode
${ }^{6}$ \qquad

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filters

Figure 1c. MAX271 Block Diagram - Pin-Strap Mode

Filter Programming

Cutoff Frequency

fC is the frequency of 3dB attenuation in the filter response.
Table 1 shows how data pins D0-D6 allow programming of 128 cutoff frequencies from 1 kHz to 25 kHz .
The equations for calculating fc from the programmed code are as follows

$$
\begin{aligned}
& \mathrm{fc}=\frac{87.5}{87.5-\mathrm{CODE}} \times 1 \mathrm{kHz} \quad \begin{array}{c}
\text { for codes } 0-63 \\
(\mathrm{f} \mathrm{C}=1 \mathrm{kHz} \text { to } 3.57 \mathrm{kHz})
\end{array} \\
& \mathrm{ff}_{\mathrm{C}}=\frac{262.5}{137.5-\mathrm{CODE}} \times 1 \mathrm{kHz} \quad \text { for codes } 64-127 \\
& (\mathrm{f} \mathrm{C}=3.57 \mathrm{kHz} \text { to } 25 \mathrm{kHz})
\end{aligned}
$$

where CODE is the data on pins D0-D6 (0-127). D6 is the most significant bit (MSB)

Actual cutoff frequencies are subject to some error for each programmed code. Highest accuracy occurs at CODE $=0$ where filters are trimmed for a 1 kHz cutoff frequency. At higher codes, CODE vs. fc errors increase; the frequency error at CODE $=127$ (highest code) remains typically within $\pm 9.5 \%$. This means that the actual filter cutoff frequency, when programmed to CODE $=127$, falls between 22.63 kHz and 27.38 kHz .

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filters

$\begin{aligned} & \text { PROGRAMMED } \\ & \text { CODE } \end{aligned}$	$\underset{(\mathrm{kHz})}{\mathrm{fc}}$	$\begin{aligned} & \text { PROGRAMMED } \\ & \text { CODE } \end{aligned}$	$\underset{(\mathrm{kHz})}{\mathrm{fc}_{\mathrm{z}}}$	$\begin{aligned} & \text { PROGRAMMED } \\ & \text { CODE } \end{aligned}$	$\underset{(\mathbf{k H z})}{ }$	$\begin{aligned} & \text { PROGRAMMED } \\ & \text { CODE } \end{aligned}$	$\mathrm{fc}_{(\mathrm{kHz})}$
0	1.000	32	1.576	64	3.571	96	6.325
1	1.011	33	1.605	65	3.620	97	6.481
2	1.023	34	1.635	66	3.671	98	6.645
3	1.035	35	1.666	67	3.723	99	6.818
4	1.047	36	1.699	68	3.777	100	7.008
5	1.060	37	1.732	69	3.832	101	7.191
6	1.073	38	1.767	70	3.888	102	7.394
7	1.087	39	1.804	71	3.947	103	7.608
8	1.100	40	1.842	72	4.007	104	7.835
9	1.114	41	1.881	73	4.069	105	8.076
10	1.129	42	1.923	74	4.133	106	8.333
11	1.143	43	1.966	75	4.200	107	8.606
12	1.158	44	2.011	76	4.268	108	8.898
13	1.174	45	2.058	77	4.338	109	9.210
14	1.190	46	2.108	78	4.411	110	9.545
15	1.206	47	2.160	79	4.487	111	9.905
16	1.223	48	2.215	80	4.565	112	10.294
17	1.241	49	2.272	81	4.646	113	10.714
18	1.259	50	2.333	82	4.729	1+4	11.170
19	1.277	51	2.397	83	4.816	115	11.666
20	1.296	52	2.464	84	4.906	116	12.209
21	1.315	53	2.536	85	5.000	117	12.804
22	1.335	54	2.611	86	5.097	118	13.461
23	1.356	55	2.692	87	5.198	119	14.189
24	1.378	56	2.777	88	5.303	120	15.000
25	1.400	57	2.868	89	5.412	121	15.909
26	1.422	58	2.966	90	5.526	122	16.935
27	1.446	59	3.070	91.	5.645	123	18.103
28	1.470	60	3.181	92	5.769	124	19.444
29	1.495	61	3.301	93	5.898	125	21.000
30	1.521	62	3.431	94	6.034	126	22.826
31	1.548	63	3.571	95	6.176	127	25.000

Programmed code is the data on pins D0-D6 (0-127). D6 is the MSB.

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass FIIters

MAX270 Control Intorface
The AO pin is a three-level input that selects the memory addresses for updating cutoff frequency data in $\mu \mathrm{P}$ mode:

A0	SELECTS
Logic Low	Filter B
Logic High	Filter A

Figure 2 shows $\mu \mathrm{P}$-mode interface timing.
Connecting AO to the negative supply selects pin-strap mode. Pin-strap mode allows filter programming with no timing requirements. Internal memory latches are disabled, permitting filters A and B to be programmed directly to fc data strapped on DO-D6. This mode disables CS and WR controls, and filters A and B are programmed to the same fc.
A low level on the $\overline{\text { SHDN }}$ pin shuts down all amplifiers and floats OUTA, OUTB, and OP OUT. Current consumption drops to less than $15 \mu \mathrm{~A}$ in this mode.

MAX271 Control Interface

Connecting the MODE pin to GND or V - selects the $\mu \mathrm{P}$ mode. In this mode, addressable program memory controls filter cutoff frequency programming and all T / H functions, except \bar{T} / H. Refer to Figure 2 for timing characteristics. Table 2 describes available functions:

Figure 2. MAX270MAX271 Digital Timing Diagram

In $\mu \mathrm{P}$ mode, $\overline{\mathrm{SHDN}}, \mathrm{T} / \mathrm{H} \mathrm{A} \bar{B}$, and T/H EN pins are disabled. \bar{T} / H remains enabled and performs the T / H tracking/holding function.
Tying MODE to $\mathrm{V}+$ selects pin-strap mode. In this mode, both memory latches are transparent, and data on DO-D6 controls the fc of filters A and B directly (filters A and B are programmed to the same fC). Pin strap DO-D6 for operation without μ P. AO, A1, CS, and WR are disabled.

Table 2. MAX271 $\mu \mathrm{P}$-Mode Interface

A1	A0	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	0	7 -bit fc data							Selects filter A
0	1	7 -bit fc data							Selects filter B
1	0	x	x	X	X	x	x	0	T/H OUT disabled
1	0	X	X	X	X	x	X	1	TH OUT enabled
1	0	X	X	X	X	X	0	x	Selects OUTB as input to T TH
1	0	X	X	X	X	X	1	X	Selects OUTA as input to TH
1	1	X	X	X	X	x	X	0	Filter shutdown mode. All outputs floated, $15 \mu \mathrm{~A}$ max supply current
1	1	x	X	X	x	x	X	1	Removes filter from shutdown mode

$\mathrm{X}=$ Don't care

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filters

Digital Threshold Levols
All digital inputs are TTL and CMOS compatible, unless otherwise stated. Inputs are CMOS gates with less than $1 \mu \mathrm{~A}$ leakage current and 8 pF capacitance loading. Typical logic voltage thresholds are a function of the V_{+} supply voltage as shown below (voltages are referenced to GND).

\mathbf{V}_{+}	LOGIC THRESHOLD VOLTAGE (\mathbf{V})
$\mathbf{(})$	+2.4
8	+2.3
7	+2.0
6	+1.75
5	+1.5
4	+1.0
2.5	

NOTE: For +5 V single-supply operation, where incoming logic signals are referenced to V-, typical logic thresholds are signals are referenced tos (ryicto-rail) logic interface is
+3.5 V . Therefore, a CMOS (rater recommended.

FIIter Performance
All MAX270MAX271 internal amplifier and output stages for filter sections, uncommitted op amp, and T / H are identical. The outputs are designed to drive $5 \mathrm{k} \Omega$ in parallel with a maximum capacitance of 100 pF . At higher load levels, the output swing becomes asymmetric. All outputs can be short circuited to GND for an indefinite duration.

The MAX270/MAX271 operating frequency range is limited to aproximately 2 MHz by the bandwidth of the internal amplifiers.

FIIter Nolse

Wideband filter noise over a 50 kHz bandwidth is $12 \mathrm{u} V_{\text {RM }}$ and $38 \mu \vee$ RMS per section for fc programmed to 1 kHz and 25 kHz , respectively. A dynamic range of over 96 dB results.

FIfter Input Impeciance

At DC, the input impedance at INA and INB is equal to the DC input impedance of the amplifier, which is about $5 \mathrm{M} \Omega$. At higher frequencies, internal capacitors conribute to an effective input impedance that may fall as ow as $100 \mathrm{k} \Omega$ at 25 kHz .

MMX271 Trackemend-Hold

The MAX271 T/H is functionally equivalent to a switched 200 pF capacitor buffered by a unity-gain amplifier (Figures 1b, 1c). When the $\overline{\mathrm{T}} / \mathrm{H}$ pin is driven low, the output of filter A or filter B (whichever is selected via control interface) internally connects to the amplifier, and T/H OUT follows the filter output The offset at T/H OUT ($\pm 6 \mathrm{mV}$ max) is the combined offset of the filter amplifier and the T/H buffer. When $\overline{\mathrm{T}} / \mathrm{H}$ is pulled high, the switch disconnects the filter signal from the T / H. The T / H capacitor holds the stored charge, and that voltage is buffered at T / H OUT.
A low level at T/HEN floats T/HOUT, enabling multiplexed operation (Figure 3). T/H A/B selects between OUTA and OUTB as the T / H input. In μ P mode, the $T / H E N$ and T / H OUT functions are controlled by writing control bits to program memory, with T/H EN and T/H OUT pins disabled.

See Typical Operating Characteristics graphs for T/H dynamic accuracy.

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filters

\qquad

Applications Information

Power-Supply Configurations

MAX270/MAX271 power supplies must be properly bypassed. Best performance is achieved if $\mathrm{V}+$ and V - are bypassed to GND with $4.7 \mu \mathrm{~F}$ electrolytic (tantalum is preferred) and $0.1 \mu \mathrm{~F}$ ceramic capacitors in parallel. These should be as close as possible to the chip supply pins.
Single supplies in the range of 4.75 V to 16 V may be used to power the MAX270/MAX271 as shown in Figure 4. Digital logic may be referenced to V - (system ground), but will not maintain TTL compatibility. CMOS (rail-to-rail) logic is recommended. For $\mu \mathrm{P}$-mode operation with a single supply, the MAX270 AO pin must be configured with a voltage divider (Figure 4).
Lowest quiescent current in shutdown mode is achieved when AO is either at $\mathrm{V}+$ or V -

Figure 3. MAX271 Multiplexed Operation

Figure 4. Power-Supply Configurations

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filters

Figure 6 shows how filter sections A and B may be programmed to different cutoff frequencies without the use of a $\mu \mathrm{P}$. The MAX690 $\mu \mathrm{P}$ supervisory circuit provides the proper programming sequence when the circuit is powered up by controlling the 74 HC 373 data buffer and the MAX270 addressing pin to load independent fc data for filters A and B .

Figure 5. Cascading Filter Sections

Figure 6. Independent fc Programming Without a μP
14 \qquad

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filters

Pin Configurations (continued)

Digitally-Programmed, Dual 2nd-Order Continuous Lowpass Filters

24 Lead Plastic DIP
$\theta_{J A}=110^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{J C}=50^{\circ} \mathrm{C} / \mathrm{W}$

20 Lead Small Outline, Wide

$\theta_{J A}=100^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JC}}=50^{\circ} \mathrm{C} / \mathrm{W}$

20 Lead CERDIP
$\theta_{J A}=90^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JC}}=40^{\circ} \mathrm{C} / \mathrm{W}$

