MAXIM
 4th- and 8th-Order Continuous-Time Active Filters

General Description

The MAX274 and MAX275 are continuous-time activ filters consisting of independent cascadable 2nd-order ections. Each section can implement any all-pole sections. Each section can implement any all-pole bandpass or lowpass filter response, such as Butter worth, Bessel, and Chebyshev, and is programmed by ower noise than switched-capacitor filters, as well as superior dynamic performance - both due to the con tinuous-time design. Since continuous-time filters do no equire a clock, aliased and clock noise are eliminated with the MAX274/MAX275
The MAX274 comprises four 2nd-order sections, permit ing 8th-order filters to be realized. Center frequencie range up to 150 kHz , and are accurate to within $\pm 1 \%$ ove he full operating temperature range. Total harmonic distortion (THD) is typically better than -89dB
The MAX275 comprises two 2nd-order sections, permiting 4th-order filters to be realized. Center frequencies range up to 300 kHz , and areacurate to within $\pm 0.9 \%$ (THD) is typ ally better than -86dB istortion (THD) is typically better than -86dB
Both filters operate from a single +5 V supply or from dua 5 V supplies

Applications
Low-Distortion Anti-Aliasing Filters DAC Output Smoothing Filters
Modems
Audio/Sonar/Avionics Frequency Filtering Vibration Analysis

Pin Configurations

Continuous-Time Filter - No Clock, No Clock Ne
Implement Butterworth, Chebyshev, Bessel and Other Filter Responses
Lowpass, Bandpass Outputs
Operate from a Single +5V Supply or Dual $\pm 5 \mathrm{~V}$ Supplies

- Design Software Available
- MAX274 Evaluation Kit Available
- 8th-Order - Four 2nd-Order Sections (MAX274) 4th-Order - Two 2nd-Order Sections (MAX275)
- Center-Frequency Range:

300 kHz for

- Low Noise: -86dB THD Typical for MAX274

09dB THD Typical for MAX275

- Center-Frequency Accurate Over Temp
within 10 \% MAX
Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX274ACNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX274BCNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX274ACWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Wide SO
MA $\times 274 \mathrm{BCW}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Wide SO
MAX274BC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$

Typical Operating Circuits

PIN NUMBERS ARE FOR DIP
Typical Dperating Circuils continued on last page

4th- and 8th-Order Continuous-Time

Active Filters

ABSOLUTE MAXIMUM RATINGS

Continuous Power Dissipation ($T_{A}=+70^{\circ} \mathrm{C}$)
MAX274
24-Pin Narrow Plastic DIP
(derate $13.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 28-Pin Wide SO (derate $12.50 \mathrm{~mW} /^{\circ} \mathrm{C}$ above $+70^{\circ}$) .1000 mW 24-Pin CERDIP (derate $12.50 \mathrm{~mW} / /^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) .1000 mW
24-Pin
MAX275
20-Pin Plastic DIP(derate $11.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 889 mW 20-Pin Wide SO (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ}$) .. 800 mW
20 -Pin CERDIP (derate $11.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). .889 mW
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and tunctional
peration of the device at these or any other conditions absolute maximum rating conditions for extended periods may aftect devvice reliability
$\left(\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}\right.$, test circuit A of Figure $1 \mathrm{a}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MiN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
FILTER CHARACTERISTICS							
Maximum Operating Frequency					10		MHz
Center-Frequency Range	Fo	(Note 1)		$\begin{aligned} & 100 \text { to } \\ & 150 \mathrm{k} \end{aligned}$			Hz
Center-Frequency Accuracy	Fo		MAX274A	-1.0		1.0	\%
			MAX274B	-1.4		1.4	
Q Accuracy - Unadjusted			MAX274A	-10		10	\%
			MAX274B	-15		15	
Q Accuracy - Adjusted		Scaled for bandwidth compensation		± 2.8			\%
Fo Temperature Coefficient	$\Delta \mathrm{Fo} / \Delta \mathrm{T}$	(Note 2)		-28			ppm $/{ }^{\circ} \mathrm{C}$
Q Temperature Coefficient	$\Delta \mathrm{Q} / \Delta \mathrm{T}$	(Note 2)		160			$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Wideband Noise	VNoISE	LPO_, Figure la, test circuit B	1 Hz to 10 Hz	23			$\mu V_{\text {RMS }}$
			10 Hz to 10 kHz		120		
DC CHARACTERISTICS							
DC Lowpass Gain Accuracy	HoLP	Assume ideal resistors	MAX274A	-2		2	\%
			MAX274B	-3		3	
Offset Voltage at Outputs	Vos	LPO_	MAX274A	-200		200	mV
			MAX274B	-300		300	
		BPO_	MAX274A	-40		40	
			MAX274B	-80		80	
Offset Voltage Drift	$\Delta \mathrm{V}$ OS/ $/ \mathrm{T}$			20			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Leakage Current at FC Pin	IFC			-10		10	$\mu \mathrm{A}$
DYNAMIC FILTER CHARACTERISTICS							
Signal-to-Noise plus Distortion	SINAD	FTEST $=1 \mathrm{kHz}$, Figure 1 a . test circuit B	$\mathrm{LPO}_{\mathrm{LPO}}^{-}=8 \mathrm{Vp}-\mathrm{p}$	-86			dB
		$\mathrm{F}_{\text {TEST }}=10 \mathrm{kHz}$, Figure la, test circuit C			-82		

ELECTRICAL CHARACTERISTICS (continued) - MAX274

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage Swing	Vout	LPO_, $\mathrm{BPO}_{-}, \mathrm{RLOAD}=5 \mathrm{k} \Omega$	± 3.25	± 4.50		V
Slew Rate	SR			10		$\mathrm{V} / \mathrm{\mu s}$
Gain-Bandwidth Product	GBW			7.5		MHz
POWER REQUIREMENTS						
Supply Voltage Range	VSUPP	(Note 3)	± 2.37		± 5.50	V
Supply Current	Ic	For V+, V-		20	30	mA
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}+=5 \mathrm{~V}+100 \mathrm{mVp}-\mathrm{p}$ at $1 \mathrm{kHz}, \mathrm{V}-=-5 \mathrm{~V}$		-30		dB

Note 1: Center frequencies (Fos) below 100 Hz are possible at reduced dynamic range
Note 3: See Figure 9 for single-supply opera
ELECTRICAL CHARACTERISTICS - MAX275

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
FILTER CHARACTERISTICS							
Maximum Operating Frequency				10			MHz
Center-Frequency Range	Fo	(Note 1)		$\begin{aligned} & 100 \text { to } \\ & 300 \mathrm{k} \end{aligned}$			Hz
Center-Frequency Accuracy	Fo		MAX275A	-0.9		0.9	\%
			MAX275B	-1.4		1.4	
Q Accuracy - Unadjusted			MAX275A	-8		8	\%
			MAX275B	-12		12	
Q Accuracy - Adjusted		Scaled for bandwidth compensation			± 1		\%
Fo Temperature Coefficient	$\Delta \mathrm{F} / \Delta \mathrm{T}$	(Note 2)			-24		ppm/ $/{ }^{\circ} \mathrm{C}$
Q Temperature Coefficient	$\Delta \mathrm{Q} / \Delta \mathrm{T}$	(Note 2)			38		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Wideband Noise	$V_{\text {NOISE }}$	LPO_, test circuit B of Figure 1 b	1 Hz to 10 Hz		6		$\mu V_{\text {RMS }}$
			10 Hz to 10 kHz		42		
DCCHARACTERISTICS							
DC Lowpass Gain Accuracy	Holp	Assume ideal resistors	MAX275A	-1		1	\%
			MAX275B	-2		2	
Offset Voltage at Outputs	Vos	LPO_	MAX275A	-125		125	mV
			MAX275B	-250		250	
		BPO_	MAX275A	-50		50	
			MAX275B	-100		100	
Offset Voltage Drift	$\triangle \mathrm{V}$ O/ $/ \mathrm{T}$ T				20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Leakage Current at FC, Pin	IFC			-10		10	$\mu \mathrm{A}$
DYNAMIC FILTER CHARACTERISTICS							
Signal-to-Noise plus Distortion	SINAD	FTEST $=1 \mathrm{kHz}$, test circuit B of Figure 1 b .	$\begin{aligned} & \text { LPO } \\ & \mathrm{VLPO} \\ & \hline \end{aligned}$		-89		dB
		$\mathrm{F}_{\mathrm{TEST}}=10 \mathrm{kHz}$, test circuit C of Figure 1b,			-83		

4th- and 8th-Order Continuous-Time Active Filters

ELECTRICAL CHARACTERISTICS (continued) - MAX275

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage Swing	Vout	LPO_, BPO_, RLOAD $=5 \mathrm{k} \Omega$	± 3.25	± 4.50		V
Internal Amplifier Slew Rate	SR			10		$\mathrm{V} / \mathrm{\mu s}$
Gain-Bandwidth Product	GBW			15		MHz
POWER REQUIREMENTS						
Supply Voltage Range	VSUPP	(Note 3)	± 2.37		± 5.50	\checkmark
Supply Current	Ic	For $\mathrm{V}+\mathrm{V}$ -		10	24	mA
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{+}=5 \mathrm{~V}+100 \mathrm{mVp}-\mathrm{p}$ at $1 \mathrm{kHz}, \mathrm{V}-=-5 \mathrm{~V}$		-35		dB
Note 1: Center frequencies (Fos) below 100 Hz are possible at reduced dynamic range. Note 2: Assume no drift for external resistors. Note 3: See Figure 9 for single-supply operation.						

4th- and 8th-Order Continuous-Time Active Filters

Typical Operating Characteristics-MAX274 (continued)

FREQuENCY (kH

MAX274/MAX275

4th- and 8th-Order Continuous-Time Active Filters

4th- and 8th-Order Continuous-Time Active Filters
\qquad Typical Operating Characteristics-MAX275 (continued)

4th- and 8th-Order Continuous-Time Active Filters

Detailed Description

The MAX274 contains four identical 2nd-order filter sec tions while the MAX275 contains two sections. Figure 2 fiter the state-variable topography employed in each pass and bandpass functions at separate outputs. The MAX274/MAX275 employ a four-amplifier design chosen for its relative insensitivity to parasitic capacitan ces and high bandwidth. The bulit-in capacitors and amplifiers, together with external resistors, form cascaded integrators with feedback to provide simultaneous lowpass and bandpass filtered outputs. To maximize bandwidth, the highpass (HP) node is not accessible. A $5 \mathrm{k} \Omega$ resistor is connected in series with the input of the last stage amplifier to isolate the integration capacito from external parasitic capacitances that could alter the filter's pole accuracy
Although a notch output pin is not available, a notch can be created at the pole frequency by summing the input

Figure 1b. MAX275 Connection Diagram and Test Circuit
and bandpass output. See Creating a Notch Output Section

Filter Design Procedure
Figure 3 outlines the overall filter design procedure Maxim's Filter Design Software is highly recommended This software automatically calculates filter order, poles, and Qs based on the required filter shape, so no manual calculations are necessary. Menu-driven commands and on-screen filter response graphs take the user through the complete design process, including the selection of resistor values for implementing a filter with the MAX274/MAX275. See Maxim Filter Design Software section.
If designing without the filter software, see the filter design references listed at the end of this data sheet. These references provide numerical tables and equations needed to translate a desired filter response into order, poles, and Q. Once these three parameters have been calculated, see the next section, Translating Fo/Q Pairs into MAX274/MAX275 Hardware (Resistor Selection).

4th- and 8th-Order Continuous-Time Active Filters

* WHILE THE RATIO RY/RXIS ACCURATELY CONTROLLED, PROCESS VARIATIONS AND TEMPERATURE DRIFT RESULT IN UP TO $\pm 30 \%$ VARIATION OF ACTUAL VALUES OF RX ANO RY. LOWPASS OUTPUT $G(S)=\operatorname{HotP} \frac{\omega_{0}{ }^{2}}{S^{2}+S\left(\omega_{0}(0)+\omega_{0}{ }^{2}\right.}$ F(LOG SCALE) HOLP = LOWPASS OUTPUT GAIN AT DC $\mathrm{F}_{0}=\omega_{0} / 2 \pi=$ POLE FREQUENCY $\left(F_{0}\right)=\left(F_{0}\right) \sqrt{\left(1-\frac{1}{2 Q^{2}}\right)+\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)^{2}+1}}$ $F_{P}=F_{0} \sqrt{1-\frac{1}{2 Q^{2}}}$ $H_{O P}=($ Hap $) \frac{1}{\frac{1}{Q} \sqrt{1-\frac{1}{4 Q^{2}}}}$ BANDPASS OUTPUT $G(S)=H_{0 B P} \frac{S\left(\omega_{0} t\right)}{S^{2}+S\left(\omega_{0} t\right)+\omega_{0}{ }^{2}}$ HOBP = BP GAIN AT $\omega=\omega_{0}$ $F_{0}=\omega_{0} / 2 \pi=$ THE CENTER FREQUENCY OF THE COMPLEX POLE PAIR. INPUT-OUTPUT PHASE SHIFT IS - 180° AT Fo. FPK = THE FREQUENCY AT WHICH BPO_ GAIN IS THE GREATEST (MAY NOT BE EQUAL TOFO). Q = THE QUALITY FACTOR OF THE COMPL EX POLE PAIR. ALSO THE RATIO OF FO, TO -3dB (0.707) BANDWIDTH OF THE SECOND-ORDER BANDPASS RESPONSE. $Q=\frac{F_{P K}}{F_{H}-F_{L}}$			

GLZXVW/tLZXVW

Figure 2. Single 2nd-Order Filter Section
MAXIM

4th- and 8th-Order Continuous-Time Active Filters

Figure 3. General Filter Design Flowchart
12

4th- and 8th-Order Continuous-Time Active Filters

Translating Calculated Fo/Q Pairs into

 MAX274/MAX275 Hardware (Resistor Selection) If the filter design procedure has been completed as outlined in Figure 3, with the exception of external resisto selection, follow these steps1. Check all F_{0} / \mathbf{Q} pairs for realizability. The MAX274/MAX275 have limits on which F_{0} / Q values can be implemented. These limits are bound by finite amplifier gain-bandwidth and amplifier load drive capability (which limit the highest frequency F_{0} /highest Qs) as well as amplifier noise pickup and susceptibility to errors caused by stray capacitance (which sets a low-frequenc limit on the poles). Refer to Figure 4 to be sure each $\mathrm{F}_{\mathrm{o}} / \mathrm{Q}$ pair is within the "realizable" portion of the graph. If filte Qs are too high, reduce them by increasing the filter order (that is, increase the number of poles in the overall filter). High-frequency F_{0} s (up to 400 kHz) and high Qs outsid of Figure 4's limits are also realizable, but F_{0} and Q will deviate significantly from the idea. Adjust resistor values by prototyping.
To implement F_{0} s less than 100 Hz , see High-Value Resisor Transformation section
2. Calculate resistor values for each section ($\mathrm{F}_{\mathrm{o}} / \mathrm{Q}$ pair). Calculate resistor values using graphs and equa ons in steps A through D of this section. Begin by estimating required values according to the graphs; then use the given equations to derive a precise value.

Igure 4. Usable F_{o}, Q Range. See Translating Fo/Q Pairs into Hardware (Resistor Selection)

Resistor values should not exceed $4 \mathrm{M} \Omega$ because parasitic capacitances shunting such high values cause excessive Fo/Q errors. Values lower than $5 \mathrm{k} \Omega$ for R2 and R3 are not recommended due to limited amplifier output drive capability. For cases where larger values are un-High-Value Resistor Transformation section.
The Frequency Control (FC) pin is connected to $\mathrm{V}+$, GND, or V - and scales R 3 and R 1 to accomodate a wide range of gains and Q values. Different FC settings may be chosen for each section. Refer to the FC Pin Connection section
The steps for calculating resistor values are given below. STEP A. CALCULATE R2.

Resistors R2 and R4 set the center frequency

STEP B. CALCULATE R4.

$$
R 4=R 2-5 k S
$$

R4 may be less than $5 \mathrm{k} \Omega$ because an internal series $5 \mathrm{k} \Omega$ resistor limits BPO_loading

4th- and 8th-Order Continuous-Time

 Active Filters
MAX274/MAX275/Software/EV kit

STEP C. CALCULATE R3

R3 sets the Q for the section. R3 values are plotted R3 sets Q tor the section. R3 valitiply to the graph's value by the desired Q.
Given Q, three choices exist for R3, depending on the FC setting. Choose a setting that provides a reasonable resistor value $(5 \mathrm{k} \Omega<\mathrm{R} 3<4 \mathrm{M} \Omega)$. $\mathrm{R} 3>4 \mathrm{M} \Omega$ may be
used if unavoidable - refer to the High-Value Resistor used if unavoidable - refer to the High-Value Resisto Transformation section for an explanation of resistor "Ts.

STEP D. CALCULATE R1
R1 sets the gain. If individual section gains have not yet been calculated, refer to Cascaded Filter Gain Optimiza tion, Ordering of Sections.
R1 is inversely proportional to LP gain. R1 values for gains of 1 and 10 are plotted; scale R1 according to esired gain
Lowpass Filters:
The FC pin setting was chosen in Step C (or from previous section calculations).

••USE RESISTOR "T-NETWORK" TOREDUCE VALUE
(SEE HGH-VALUERESISTORTRANSOFOMATIONSECTION)

$$
R 1=\frac{(2)\left(10^{9}\right)}{\left(F_{o}\right)\left(H_{O L P}\right)} \times\left(\frac{R X}{R Y}\right)
$$

CONNECT FC TO:	RX/RY
V_{+}	$4 / 1$
$G N D$	$1 / 5$
$\mathrm{~V}-$	$1 / 25$

where $\mathrm{H}_{\mathrm{OLP}}$ is the gain at LPO_ at DC

4th- and 8th-Order Continuous-Time Active Filters

Bandpass Filters:

where $\mathrm{H}_{\mathrm{OBP}}$ is the gain at BPO_{-}at F_{0}.
3. Recalculate resistor values to compensate for filter amplifier bandwidth errors. Some of the Typical Operating Characteristics graphs show deviations in F_{0} and Q compared with expected values, due to gain rolloff of the cocalculating values R1-R4 ecalculating values R1-R4.
4. Build a filter prototype. Build and test all filter designs! Refer to the Prototyping, PC-Board Layout section of this data sheet.
For applications that require high accuracy (for example, those with filter sections containing Qs greater than 10) or those that use a ground plane, a final prototype tuning procedure is recommended. Build a prototype filter; then adjust resistor values of each section until desired accuracy is achieved.

High-Value Resistor Transformation
High-value resistors (greater than $4 \mathrm{M} \Omega$) used in the MAX274/MAX275 filter circuit introduce excessive F_{0} and Q errors. To reduce the impedance of these feedback paiks resitor "T" method shown in Figure 5 . the resistor "T" method shown in Figure 5.

Fos less than 100 Hz can be realized using T-networks. T-networks provide the equivalent of large resistor values for R2, R3, and R4, necessary for low-frequency filters; however. T-networks reduce dynamic range by attenuating the input signal level. Note that parasitic capacitances across these high resistor values affect the filter response at high frequencies. For best results, build a prototype and check its performance thoroughly

Odd Number of Poles
For lowpass designs containing an odd number of poles add an RC lowpass filter after the final filter section. The value of $R C$ should be

$$
R C=1 / 2 \pi F_{0}
$$

where F_{0} is the desired real pole frequency. If required buffer the RC with an op amp.
In many cases it may be advantageous to simply increase the filter order by 1 , and implement it with an additional 2nd-order section.

FC Pin Connection
Connect FC to GND for all applications, except where Connnect $F C$ to GND for all applications, except where resistor values fall below $5 \mathrm{k} \Omega$ (at high Fos, low Qs). In connect FC to V - to keep the value of R1 and R3 below $4 \mathrm{M} \Omega$.
F_{0} and Q errors are significantly higher when $F C$ is connected to $V+$ or V - (see Typical Operating Characteristics). Adjusting resistor values compensates for these errors, since the errors are repeatable from part to part to $\mathrm{V}+$.

Cascading Identical Sections

for Simplest Bandpass
If designing a bandpass filter where a single frequency (or a very narrow band of frequencies) must be passed several 2nd-order sections with identical Fos and Qs may be cascaded. The resulting Q (selectivity) of the filter is a function of the individual sections' Q s and the number of sections cascaded:

$$
Q_{t}=\frac{Q}{\sqrt{2^{1 / n-1}}}
$$

where $Q t$ is the overall cascaded filter Q, Q is the Q of each individual section, and N is the number of sections

4th- and 8th-Order Continuous-Time Active Filters

4th- and 8th-Order Continuous-Time Active Filters

Creating a Notch Output

A notch (zero) can be created in the filter response by summing Anotch (zero) can becreatedin the tilter response by summing the input signal with BPO_ using an external op amp (Figure 2nd-order section, as well as a zero at the pole frequency 2nd-order section, as well as a zero at the pole frequency
(transferfunction given in Figure6a). HOBP (BPgainat F_{0}) must (transferfunction given in Figure6a). HOBP (BP gain at Fo_{O}) must
be accurately set to unity so the inputsignal summed with BPO cancels precisely at the pole frequency. The notch's maximum attenuation is therefore a function of the accuracy of R1, R3, R_{IN}, and R_{BP}
A notch can be used to create a null within the passband of a lowpass filter to reject specific frequencies (see Applications section).

FREQUENCY(Hz)

Cascaded Filter Gain
Optimization, Ordering of Sections Gains across the individual sections in a filter may be set Gains across the ind wavs, as long as the total gain from filter input to output is correct. Often, gains cannot be equally divided among sections, since different F_{0} s and Qs create gain peaks and valleys at different frequencies for each section.
The goal in choosing gains is to prevent section outputs from swinging beyond the $\pm 3.25 \mathrm{~V}$ limit (using $\pm 5 \mathrm{~V}$ sup plies) while the full input signal is applied. On the other hand, if section gains are set too low and only a small proportion of output range is used, the noise factor in Hows. An option to swing as cose to +3.25 V as possible in a wide range of frequencies.

Check the unused output (BPO_ or LPO_), and the inter nal HP node for overvoltage, since clipping at any node will cause distortion at the outputs. The HP node is no available for probing (Figure 2); however, its gain ma approach RX/R1. Low R1 values and connecting FC to $V+($ which sets $R X$ as high as $64 k \Omega$) may cause this nod to clip
Maxim's Filter Design Software allows optimum gain by plotting output gains of each successive cascaded filter section, including the internal node. Gains may be ad justed manually and sections reordered for the bes overall dynamic range.
To optimize gain without the help of software, begin by ordering the sections from lowest Q to highest Q. Divide gains equally between sections, setting each section gain to:

$$
H_{O}=A^{(1 / N)}
$$

where $A=$ overall filter gain
$H_{O}=H_{O B P}$ for bandpass designs (gain at F_{O}) $H_{O}=$ HoLP for lowpass designs (gain at DC) $^{\text {(}}$ $N=$ total number of sections
This approach offers a good first-pass solution to clip ping problems in the high Q sections by keeping gains low in the first (low Q) sections. The gains may then adjusted in hardware to maximize overall dynamic range.

Figure 6b. Notch Response

4th- and 8th-Order Continuous-Time Active Filters

Figure 7b. MAX275 Suggested PC-Board Layout for DIP
18
MAXIM

4th- and 8th-Order Continuous-Time Active Filters

Resistors
Aside from accuracy, the most important criterion for resis
or selection is parasitic capacitance across the resistor
Typical capacitance should be less than 1pF. Precision
wire-wound resistors exhibit several picofarads, as well as
unacceptable inductance - DO NOT USE THESE
Capacitance effectively reduces the resistance at high
requencies (especially when using high-value resistors)
and causes phase shifts in feedback loops. Do not mount
esistors in sockets. Socket capacitance appearing across
resistors is often several picofarads, and will cause sig-
nificant errors in F_{0} and Q. Metal-film resistors minimize
noise better than carbon types
For highest accuracy filters, build the filter prototype on a
PC board with a layout as similar as possible to the final
production circuit. If a ground plane will be used in
production circuit. If a ground plane will be used in
not use push-in type breadboards for prototyping - pin-
to-pin capacitance is too high. For faster prototyping, the
MAX274 evaluation kit includes a PC-board circuit to test
designs.
Layout-sensitive errors, though repeatable from part to
part, vary according to resistor placement, trace routing
and ground-plane layout. For highest accuracy, use the
ecommended layout provided in Figures 7 a and
poessible. $L P 1$, and BPI are particularly sensitive to
ground capacitance, and may cause errors in Q If
ground plane is used, tune the prototype filter by adjust
round resistor values to cancel errors caused by ground
capacitance.
Prevent capacitive coupling between pins. Coupling between
BPI and BPO _ can cause F_{0} errors; capacitance across
BPI and BPO_ can cause F_{0} errors, capacitance acros
and $B P O$ and $L P I$ (R4) cause F_{0} and Q errors. Minimiz
these errors with "tight" (shortest trace) layout practices.
or multiple-order filters, measure each section in
dividually, before cascading, to verify correct F_{0} and Q
For best results, measure BPO with a spectrum analyzer
F_{0} is the frequency at which the input and BPO are 180
ut of phase. Q is the ratio of $F P K$ to $B P O$'s - 3 dB
band width (Figure.2), where FPK is the frequency at which
BPO_ gain is the greatest (which may not be equal to F_{0})

Filter Fo and Q Accuracy

 F_{0} sensitivity to external resistor tolerance is 1:1 - for example, use of 1% tolerant resistors for R2 and R4 adds $\pm 1 \%$ error to F_{0} (which should be added to the $\pm 1 \%$ tolerance of the MAX274/MAX275, guaranteed over emperature). Q errors are of greater magnitude, since they are a function of the internal resistor divider (controlled by the FC pin) and also involve R3. Typical Q error distributions are given in the Typical Operating Characteristics; additional Q errors associated with resistor tolerances are a function of R2, R3, and R4, and must be calculated according to the values used.DC Offset Removal
Figures 8 a and 8 b show methods for removing the DC offset voltage at LPO_. The first method shows adjustable DC nulling signals injected into either adjustable DC nulling signals injected into either BPI_or the filter input. RTRIM must be adjusted until
DC offset is nulled at the LPO_(Figure 8a). Figure 8b DC offset is nuled at the LPO_(Figure 8a). Figure 8 b removes DC offset by AC coupling the LPO_ output, while allowing a DC path through R from the input. At $D C$ and low frequencies, the output is equal to the prefiltered signal input (across R); at higher frequencies, C conducts and the output equals the signal at LPO_. The external RC pole should be set at least one frequency decade lower than the overall filter F_{o}. A low offset amplifier can buffer the output signal, if desired. For bandpass filters, a simple buffered RC highpass filter at the output removes DC offset

Noise and Distortion
Noise-spectral density is shown in the Typical Operating Characteristics. The noise frequency distribution is shaped by the filter gain and response (highe Q und the wili have a proportionally higher mise $1 / f$ noise. With FC set to $V+$ noise is 3 times greater than if set to GND or V-- therefore avoid this setting for noise-sensitive op plications. The noise density graphs from the Typical plications. The noise density graphs from the Typical Q for an accurate noise estimation.
The MAX274/MAX275 can drive $5 \mathrm{k} \Omega$ loads to typically within $\pm 500 \mathrm{mV}$ of the supply rails with negligible distortion. The outputs can drive up to 100 pF ; however, filters 100 Hz driving $130 \mathrm{pF} \mathrm{F}_{\mathrm{o}}=100 \mathrm{kHz} Q=10$ section)

4th- and 8th-Order Continuous-Time Active Filters

4th- and 8th-Order Continuous-Time Active Filters

Figure 11. 10 kHz 6 6th-Order Butterworth Lowpass Filter with $2 k H z$ Notch (MAX274)

21

4th- and 8th-Order Continuous-Time

 Active Filters

4th- and 8th-Order Continuous-Time Active Filters

Power Supplies

The MAX274/MAX275 can be operated from a single supply or dual supplies (Figure 9). V+ and V-pin must be properly bypassed to GND with $4.7 \mu \mathrm{~F} \mathrm{electrolytic}$ (tantalum preferred) and $0.1 \mu \mathrm{~F}$ ceramic capacitors in parallel. These should be as close as possible to the chip supply pins.
For single-supply applications, GND must be centered between $\mathrm{V}+$ and V - voltages so signals remain in the common-mode range of the internal amplifiers.

Figure 9. Power-Supply Configurations
Design Software
\qquad
Maxim's filter software reduces the time required to design a continuous-time lowpass or bandpass filt filter requirements, using a "spreadsheet-style" format the software calculates order poles and Qs of classic filter pes (Butterworth, Chebyshev, or Bessel), and resisto values required to implement the desired filter response
For hardware prototyping with the MAX274, the MAX274 evaluation kit is recommended, which includes a PC board and a MAX 274 IC

- Calculates filter ord ilter requirements.
- Plots filter responses - gain, phase, and group

Pols fiter responses - gain, phase, and group
delay - ior inspection BEFORE you build the filter

- Calculates resistor values used to obtain desired Calculates resistor values used to obtain desir
filter response using the MAX274 or MAX275. Ordering Information

PART	DISK TYPE
MAX274SOFT	$51 / 4{ }^{-1}$ Floppy
MAX275SOFT	$51 / 4{ }^{2}$ Floppy

In the USA and Canada, order directly from Maxim (1-800-998-8800). In other countries, call your local Maxim representative

Software Operation

NOTE: CHECK

 TANT CHANGES
Installation

You will need an IBM-compatible PC, DOS version 2.0 or ater with a $51 / 4^{\prime \prime}$ floppy disk drive, and one of the following video displays: Hercules graphics, CGA, EGA, VGA, or compatible. Either a hard drive or an additional floppy drive is also required
To install the program, insert the floppy into your disk drive and type "A: INSTALL" (or B:INSTALL). Follow the instrucand type "A: NSTALL (or B:INSTALL). Follow the instrucstart the program. Be sure you are in the drive/directory where the software is installed.

After installing the software, print a hard copy of the file After installing the software, print a hard copy of the file FILTER.HLP by entering "TYPE FILTER.HLP > PRN" from
DOS. This collection of help screens serves as the inDOS. This collection of help screens serves as the instruction manual for operating the software. Individual by pressing F1, then following the instructions on the screen.

References

The following references contain information and tables to aid in filter designs:
Carson, Chen. Active Filter Design, Hayden, 1982.
Tedeschi, Franck. Active Filter Cookbook, Tab Books No 1133, 1979.
Hilburn, Johnson. Manual of Active Filter Design, McGraw Hill, 1973.
German Language:
U. Tietze; Ch. Schenk. Halbleiter-Schaltungstecknik Springer-Verlag, Berlin Heidelberg, New YorkTokyo 1991.

