MノXIM
 8th-Order, Lowpass, Switched-Capacitor Filtors

The MAX291MAX292MAX295/MAX296 are easy-touse th-order. low-pass switched-capacitor filtors that can be set up with corner frequencies from 0.1 Hz to 25 kHz MAX291MAX292) or 0.1 Hz to 50 kHz (MAX295MAX296) The MAX291/MAX295 Butterworth filters provide maximally flat passband response, and the MAX292MAX296 Bessel filters provide low overshoot and fast settling. Al four filters have fixed responses, so the design task is limited to selecting the clock frequency that controls the filter's corner frequency
An external capacitor is used to generate a clock using he internal oscillator, or an external clock signal can be used. An uncommitted operational amplifier (noninverting input grounded) is provided for building a continuousime lowpass filter for post-filtering or anti-aliasing
Produced in an 8 -pin DIP and a 16 -pin wide SO pack age and requiring a minimum of external components Max291 from a tiny area

Applications
ADC Anti-Aliasing Filter
Noise Analysis
DAC Post-Filtering
$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ Line-Noise Filtering

Maxim integraned Products
For tree samples \& the latest fiterature: ittp://www.mexim-le.com, or phone 1-800-99e-8s00

8th-Order, Lowpass, Switched-Capacitor Filters

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{+}=5 V, V-=-5 V\right.$, filter output measured at OUT pin, 20k Ω load resistor to ground at OUT and OP OUT, fCLK $=100 \mathrm{kHz}$
(MAX291/MAX292) or fCLK $=50 \mathrm{kHz}$ (MAX295/MAX296). TA $=$ TMIN to TMAX. unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output DC Swing		± 4			V
Output Offset Voltage	IN = GND		± 150	± 400	mV
DC Insertion Gain Error with Output Offset Removed		0.15	0	-0.15	dB
Total Harmonic Distortion plus Noise	$T_{\text {A }}=+25^{\circ} \mathrm{C}, \mathrm{fCLK}=100 \mathrm{kHz}$		-70		dB
Clock Feedthrough	fCLK $=100 \mathrm{kHz}$		6		mVp-p
CLOCK					
Internal Oscillator Frequency	CosC $=1000 \mathrm{pF}$	29	35	43	kHz
Internal Oscillator Current Source/Sink	VCLK $=0 \mathrm{~V}$ or 5 V		± 70	± 120	$\mu \mathrm{A}$
Clock Input (Note 1) High		4.0			v
Low				1.0	V
UNCOMMITTED OP AMP					
Input Offset Voltage			± 10	± 50	mV
Output DC Swing		± 4			V
Input Bias Current			0.05		$\mu \mathrm{A}$
POWER REQUIREMENTS					
Supply Votage Dual Supply		± 2.375		± 5.500	V
Single Supply	$\mathrm{V}=0 \mathrm{~V}, \mathrm{GND}=\mathrm{V} \pm 2$	4.750		11.000	V
Supply Current	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\text {CLK }}=0 \mathrm{~V}$ to 5 V		15	22	mA
	$\mathrm{V}+=2.375 \mathrm{~V}, \mathrm{~V}-=-2.375 \mathrm{~V}, \mathrm{VCLK}=-2 \mathrm{~V}$ to 2 V		7	12	

Note 1: Guaranteed by Design.
Typical Operating Characteristics
$\left(\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, fCLK $=100 \mathrm{kHz}(\mathrm{MAX} 291 / \mathrm{MAX} 292)$ or $\mathrm{fCLK}=50 \mathrm{kHz}$ (MAX295/MAX296), unless otherwise noted)

MAXIM

8th-Order, Lowpass, Switched-Capacitor Filters

ELECTRICAL CHARACTERISTICS (continued)
$V_{+}=5 V, V$ - $=-5 V$, filter output measured at

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output DC Swing		± 4			V
Output Offset Voltage	IN = GND		± 150	± 400	miv
DC Insertion Gain Error with Output Offset Removed		0.15	0	-0.15	dB
Total Harmonic Distortion plus Noise	${ }^{\top} \mathrm{A}=+25^{\circ} \mathrm{C}, \mathrm{fCLK}=100 \mathrm{kHz}$		-70		dB
Clock Feedthrough	fCLK $=100 \mathrm{kHz}$		6		$m \mathrm{Vp}$-p
CLOCK					
Internal Oscillator Frequency	$\operatorname{CosC}=1000 \mathrm{pF}$	29	35	43	kHz
Internal Oscillator Current Source/Sink	VCLK $=0 \mathrm{~V}$ or 5 V		± 70	± 120	$\mu \mathrm{A}$
Clock Input (Note 1) High		4.0			V
Low				1.0	V
UNCOMMITTED OP AMP					
Input Offset Voltage			± 10	± 50	mV
Output DC Swing		± 4			V
Input Bias Current			0.05		$\mu \mathrm{A}$
POWER REQUIREMENTS					
Supply Voltage Dual Supply		± 2.375		± 5.500	v
Single Supply	$\mathrm{V}=\mathrm{OV}, \mathrm{GND}=\mathrm{V} \pm 2$	4.750		11.000	v
Supply Current	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{VCLK}=0 \mathrm{~V}$ to 5 V $\mathrm{~V}+=2.375 \mathrm{~V}, \mathrm{~V}=-2.375 \mathrm{~V}, \mathrm{~V}$ CLK $=-2 \mathrm{~V}$ to 2 V		$\frac{15}{7}$	22	mA

Note 1: Guaranteed by Design
Typical Operating Characteristics
$\left(\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, fCLK $=100 \mathrm{KHz}$ (MAX291/MAX292) or $\mathrm{fCLK}=50 \mathrm{KHz}$ (MAX295/MAX296). unless otherwise noted.)

8th-Order, Lowpass, Switched-Capacitor Filters

$\overline{\left(V+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \text { RLOAD }=5 \mathrm{k} \Omega, \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \text {, unless otherwise noted }\right)}$ Typical Operating Characteristics
$\overline{\left(V+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \text { RLOAD }=5 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text {, unless otherwise noted. }\right) ~}$

8th-Order, Lowpass, Switched-Capacitor Filters

8-PIN	16-PIN	NAME	FUNCTION
	$\begin{aligned} & 1,2,7 \\ & 8,9,10, \\ & 15,16 \end{aligned}$	N.C.	No Connect
1	3	CLK	Clock Input. Use internal or external clock.
2	4	V-	Negative Supply pin. Dual supplies: -2.375 V to -5.500 V . Single supplies: V- = OV.
3	5	OPOUT	Uncommitted Op-Amp Output
4	6	OP IN-	Inverting Input to the uncommitted op amp. The noninverting op amp is internally tied to ground.
5	11	OUT	Filter Output
6	12	GND	Ground. In single-supply operation, GND must be biased to the mid-supply voltage level.
7	13	V+	Positive Supply pin. Dual supplies: +2.375 V to +5.500 V . Single supplies: +4.75 V to +11.0 V
8	14	IN	Filter Input

Lowpass Butterworth filters such as the MAX291/ AX295 provide maximally fat passband response, making hum deviation from the DC gain throughout the passband Lowpass Bessel filters such as the MAX292/MAX296 delay all frequency components equally, preserving the shape of step inputs, subject to the attenuation of the high er frequencies. They also settle faster than Buterwo that use a multipexer (mux) to selpt one signal to be sent to une analo-digital converter (ADC) - an ant-aliasing fiter laced between the mux and the ADC must settle quickly ater anew chane is seacted by the mux

The difference in the filters' responses can be observed when a 3 kHz square wave, is applied to the filter input (Figure 1, trace A). With the filter cutoff frequencies set at 10 kHz , trace C shows the MAX291/MAX295 Butterworth filter response and trace B shows the MAX292/MAX296 Bessel fiter response. Since the MAX292MAX296 have a inear phase response in he passband, all requency components are delayed equall, wich preqeencies of the input square wave giving rise to the rounded edges at the output The MAX291/MAX295 delay different frequeny components by varying times, causing the overshoot s, causing the overshoot and ringing shown in trace C .

Figure 1. Bessel vs. Butterworth Filter Responses
The MAX291/MAX295 give more attenuation outside the passband. The phase and frequency response curves in the Typical Operating Characteristics reveal the differences between the two types of filters.
MAX291/MAX292/MAX295/MAX296 phase shift and gain do not vary significantly from part to part. Typical phase shift and gain differences are less than 0.5% at the corner frequency (F_{C})

Corner Frequency and Filter Attenuation

 The MAX291/MAX292 operate with a 100:1 clock to corne frequency ratio and a 25 kHz maximum corner frequency where corner frequency is defined as the point where the filter output is 3 dB below the filter's DC gain. The MAX295/MAX296 operate with a 50:1 clock to corner frequency ratio with a 50 kHz maximum corner frequency. The 8 poles provide 48 dB of attenuation per octave
Background Information

 Most switched-capacitor filters are designed with biqua dratic sections. Each section implements two filtering poles, and the sections can be cascaded to produce high er-order filters. The advantage to this approach is ease of design. However, this type of design can display poor sen sitivity if any section's Q is high.An alternative approach is to emulate a passive network using switched-capacitor integrators with summing and scaling. The passive network can be synthesized using CAD programs, or can be found in many filter books Figure 2 shows the basic ladder filter structure
A switched-capacitor filter that emulates a passive ladde filter retains many of its advantages. The filter's component sensitivity is low when compared to a cascaded biquad design because each component affects the entire filter shape, not just one pole pair. That is, a mismatched component in a biquad design will have a concentrated

8th-Order, Lowpass, Switched-Capacitor Filters

Figure 2. 8th-Order Ladder Filter Network
error on its respective poles, while the same mismatch in a adder filter design will spread its error over all poles
The MAX291/MAX292/MAX295/MAX296 input impedance is effectively that of a switched-capacitor resistor (see equation below and a proportional to frequency. The input impedance values determined below represent average input impedance ele the input current is not continuous. The input current flows in a series of pulses that charge the input capacitor every time the appropriate switch is closed. A good rule of thumb is that the driver's input source resistance should be less than 10% of the filter's input impedance. The input impedance of the filter can be estimated using the following formula:

$$
Z=1 /(f C L K * C)
$$

where: fCLK $=$ Clock Frequency
The input impedance for various clock frequencies is given below:
Table 1. Input Impedance for Various Clock Frequencies

PART	$\mathbf{C}(\mathbf{p F})$	$\mathbf{1 0 k H z} \Omega$	$\mathbf{1 0 0 k H z \Omega}$	$\mathbf{1 0 0 0 k H z \Omega}$
MAX291	2.24	44.6 M	4.46 M	446 k
MAX292	3.28	30.5 M	3.05 M	305 k
MAX295	4.47	22.4 M	2.24 M	224 k
MAX296	4.22	23.7 M	2.37 M	237 k

Clock-Signal Requirements The MAX291/MAX292/MAX295/MAX296 maximum recommended clock frequency is 2.5 MHz , producing a cutoff requency of 25kHz for the MAX291/MAX292 and 50kHz for the MAX295/MAX296. The CLK pin can be driven by an external clock or by the internal oscillator with an external capacitor. For external clock applications, the clock circuitry has been designed to interface with +5 V CMOS logic. Drive the CLK pin with a CMOS gate powered from 0 V and +5 V when using either a single +5 V supply or dual +5 V supplies. The MAX291/MAX292/MAX295/MAX296 supply current increases slightly ($<3 \%$) with increasing

Figure 3. +5 V Single-Supply Operation
clock frequency over the clock range 100 kHz to 1 MHz varying the rate of an external clock will dynamically ad just the corner frequency of the filter.
Ideally, the MAX291/MAX292/MAX295/MAX296 should be clocked symmetrically (50% duty cycle). MAX291 MAX292/MAX295/MAX296 can be operated with clock asymmetry of up to $60 / 40 \%$ (or $40 / 60 \%$) if the clock remains HIGH and LOW for at least 200ns. For example if the part has a maximum clock rate of 2.5 MHz , then the clock should be high for at least 200ns, and low for a least 200ns.
When using the internal oscillator, the capacitance (COSC) on the CLK pin determines the oscillator frequency:

$$
\mathrm{f}_{\mathrm{OSC}}(\mathrm{kHz}) \approx \frac{10^{5}}{3 \operatorname{Cosc}_{\mathrm{OSC}}(\mathrm{pF})}
$$

The stray capacitance at CLK should be minimized be cause it will affect the internal oscillator frequency

Application Information

Power Supplies

The MAX291/MAX292/MAX295/MAX296 operate from either dual or single power supplies. The dual-supply vol age range is +2.375 V to +5.500 V . The $\pm 2.5 \mathrm{~V}$ dual supply is equivalent to single-supply operation (Figure 3). Mino performance degradation could occur due to the externa resistor divider network, where the GND pin is biased to mid-supply

Input Signal Range The ideal input signal range is determined by observing at what voltage level the total harmonic distortion plus noise (THD + Noise) ratio is maximized for a given corner frequency. The Typical Operating Characteristics show the MAX291/MAX292/MAX295/MAX296 THD + Noise response as the input signal's peak-to-peak amplitude is varied.

Uncommitted Op Amp

Oth-Order, Lowpass,

 Switched-Capacitor FiltersMAX291/MAX292/MAX295/MAX296

Figure 4. Uncommitted Op Amp Conligured as a 2nd-Order Butterworth Lowpass Filter ($F_{0}=10 \mathrm{kHz}$)
order continuous lowpass filter. This filter is convenient for anti-aliasing applications, or for clock noise attenuation at the switched-capacitor filter's output. Figure 4 shows a 2nd-order lowpass Butterworth filter built using the uncommitted op amp with a 10 kHz corner frequency. This filter's input resistance of 22 k satisfies the minimum load requirements of the switched-capacitor filter.
The uncommitted Op Amp (with a 2 MHz gain bandwidth product) can alternatively be used at the input of the switched-capacitor fitter to help reduce any possible clock ripple feedthrough to the output.

$$
\begin{aligned}
& \text { DAC moat-Ptherling } \\
& \text { 292MAX295/MAX296 for }
\end{aligned}
$$

When using the MAX291/MAX292MMX295/MAX296 for DAC post-filtering, synchronize the DAC and the filter clocks. If clocks are not synchronized, beat frequencies will alias into the desired passband. down the clock should be generated
switched-capacitor filter's clock.

Mammonic Distortion
Harmonic distortion arises from nonlinearities within the filters. These nonlinearities generate harmonics when a pure sine wave is applied to the fiter input. Table 2 lists MAX292/MAX295/MAX296 with a 1 kHz 5 Vp -0 sine-wave input signal, a 1 MHz clock frequency, and a $5 \mathrm{k} \Omega$ load

Table 2. Typical Harmonic Distortion (dB)

Harmonic					
Filter		2nd	3rd	4th	sth
	MAX291	. 72	. 78	-83	-89
	MAX292	. 71	-82	-82	-88
	MAX295	-93	-86	-92	-97
	MAX 296	. 71	-89	-96	-96

Ordering Information (continued)

Pant	TIMP. Mances	PNIPACKMES
max2906PA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX295CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX295C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX295EPA	$-40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX295EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX295MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP:
max203CPA	$0^{\circ} \mathrm{C}$ 10 $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX296CWE	$0^{\circ} \mathrm{C}$ 10 $+70^{\circ} \mathrm{C}$. 16 Wide SO
MAX298C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX296EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX296EWE	$-40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	16 Wide SO
MAX296MUA	$-55^{\circ} \mathrm{C}$ 10 $+125^{\circ} \mathrm{C}$	8 CERDIP**

Contact factory for dice specifications.

* Contact factory for avaiabiifty and processing to MLL-STO-883

Pin Configurations (contlinered)

Top ve:

Maxim cannor assume responsibitity for use of any cincuity other than circuity entrefy embodied in a Mexim product No circuir patent licenses are umpied. Maxim reserves the night to change the cirruitry and specifications without notice at any time.

- 1996 Maxim Integrated Products . Printed USA MADCAM is a registered trademark of Maxim Integrated Products.

