

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

\qquad

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

ELECTRICAL CHARACTERISTICS (continued)

Note 1: Test frequencies selected at ripple peaks and trough Note 2: Guaranteed by design

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

$$
\overline{(\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \text { fcLK }=100 \mathrm{kHz}(\mathrm{MAX293} / \mathrm{M})}
$$

Typical Operating Characteristics (continued)
$\left(\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}\right.$, fCLK $=100 \mathrm{kHz}(\mathrm{MAX} 293 / \mathrm{MAX} 294)$ or $\mathrm{fCLK}=50 \mathrm{kHz}$ (MAX297), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

NORMALZED INPUT FREQUENCY

LABEL	fcLK (Hz)	$\mathbf{F}_{\mathbf{O}}(\mathbf{k H z})$	INPUT FREQ. (Hz)	MEASUREMENT BANDWDTH (kHz)
A	200 k	2	200	30
B	1 M	10	1 k	80
C	200 k	4	400	30
D	1 M	20	2 k	80

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

Detailed Description
The MAX293/MAX294/MAX297 8th-order (eight-pole), elliptic, switched-capacitor, lowpass filters provide the steepest possible rolloff with frequency of the four common filter types (Butterworth, Bessel, Chebyshev, elliptic). The high Q value of the poles near the passband edge combined with stopband zeros allows for the sharp attenuation characteristic of elliptic filters. The MAX293/MAX297 have a 1.5 transition ratio and typically -78 dB and -79 dB of stopband rejection, respectively; the MAX294 has a 1.2 transition ratio (providing the steepest rolloff) and typically -58 dB of stopband rejection.

Passband Ripple

and Corner Frequency
The MAX293/MAX294 operate with a $100: 1$ clock to corner frequency ratio and a 25 kHz maximum corner frequency, with corner frequency defined as the point passband ripple (Figure 1) The passband ripple is typically 0.15 dB (MAX293) and 0.27 dB (MAX294). The MAX297 operates with a $50: 1$ clock to corner frequency ratio and a 50 kHz maximum corner frequency Its passband ripple is typically 0.23 dB .

Transition Ratio

Figure 1. Elliptic Filter Response

Figure 2. 8th-Order Ladder Filter Network

Beyond this zero, the response rises as the frequency increases until the next transmission zero. Several repeti tions of this response create the filter's stopband comb shape (Figure 1). The stopband begins at fS . At frequen cies above fs, the fiter's gain does not exceed the gain at fs. The transition ratio is defined as the ratio of the stopband frequency to the corner frequency.

Background Information

Most switched-capacitor filters are designed with bi quadratic sections. Each section implements two filterquadratic sections. Each section implements two filter-higher-order filters. The advantage to this approach is ease of design. However this type of design is highly sensitive to component variations if any section's Q is high.

An alternative approach is to emulate a passive network using switched-capacitor integrators with summing and scaling. The passive nework can be synthesized using CAD programs, or can be found in many filter books Figure 2 shows the basic ladder filter structure
A switched-capacitor filter that emulates a passive ladder filter retains many of its advantages. The filter's component sensitivity is low when compared to a cascaded biquad design because each component affects the entire filter shape, not just one pole pair. That is, a mismatched component in a biquad design will have a concentrated error on its respective poles, while the

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

Figure 3. +5 V Single-Supply Operation

Figure 4. Uncommitted Op Amp Configured as a 2 nd-Order
Butterworth Lowpass filter ($F_{0}=10 \mathrm{kHz}$)
same mismatch in a ladder filter design will spread its error over all poles.

Clock-Signal Requirements

The MAX293/MAX294/MAX297 maximum recommended clock frequency is 25 MHz producing a cutoff mended clock frequency is 2.5 MHz , producing a cutoff frequency of 25 kHz for the MAX293/MAX294 and 50 kHz or the MAX297. The CLK pin can be driven by an external clock or by the internal oscillator with an external capacitor. For external clock applications, the clock circuitry has been designed to interface with $+5 V$ CMOS 0 V and +5 V when using either a single supply or dual $\pm 5 \mathrm{~V}$ supplies. Varying the rate of an external clock will dynamically adjust the filter's corner frequency.
When using the internal oscillator, the capacitance (COSC) on the CLK pin determines the oscillator frequency:

$$
\operatorname{fosc}(k H z)=\frac{10^{5}}{3 \operatorname{Cosc}(p F)}
$$

The stray capacitance at CLK should be minimized, since it will affect the internal oscillator frequency.

Applications Information Power Supplies
The MAX293/MAX294/MAX297 operate from either dual or single power supplies. The dual-supply voltage range is $\pm 2.375 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ ($0.1 \mu \mathrm{~F}$ bypass capacitors from each supply to GND are recommended). When using a single supply, tie the V - pin to ground and bias the GND pin to the mid-supply point using a resistor-divider network, as shown in Figure 3.

Input-Signal Amplitude Range

 The ideal input-signal range is determined by observing at what voltage level the signal-to-noise plus distortion The Typical Operating Characteristics show the MAX293 MAX294MAX297 THD Noise sense the input signal's peak topeak amplitude is varied.Uncommitted Op Amp
The uncommitted op amp has its noninverting input connected to the GND pin and can be used to build a 1 st- or 2nd-order continuous-time lowpass filter. This filter is intended for anti-aliasing applications preceding the switched-capacitor filter, but it can be used as a post-filter to reduce clock noise. Figure 4 shows one of many filters that can be built with this op amp: a 2 nd-order Butterworth filter with a 10 kHz corner frequency and an input impedance greater than $22 \mathrm{k} \Omega$. Table 1 gives alternative component values for different corner frequencies of the same Butterworth filter.
Table 1. Component Values for Figure 4's Filter

Corner Freq. (Hz)	$\begin{gathered} \mathbf{R 1} \\ (\mathbf{k} \Omega) \end{gathered}$	$\begin{gathered} \mathrm{R} 2 \\ (\mathrm{k} \Omega) \end{gathered}$	$\begin{gathered} \mathrm{R} 3 \\ (\mathrm{k} \Omega) \end{gathered}$	$\begin{aligned} & \mathbf{C 1} \\ & (\mathrm{F}) \end{aligned}$	$\begin{aligned} & \mathbf{C 2} \\ & (\mathrm{F}) \end{aligned}$
100 k	10	10	10	68p	330p
50 k	20	20	20	68p	330p
25k	20	20	20	150p	680p
10k	22	22	22	330p	$1.5 n$
1k	22	22	22	3.3p	15n
100	22	22	22	33n	150n
10	22	22	22	330n	1.5μ

NOTE: Some approximations have been made in selecting
preferred component values.
The passband error caused by a 2 nd-order Butterworth can be calculated using the formula.
Gain error $=-10 \log \left[1+\left(\frac{f}{f_{c}}\right)^{4}\right] d B$

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

As the passband ripple of the MAX293/MAX294/MAX297 elliptic filters is of the order of $\pm 0.1 \mathrm{~dB}$, it is normally appropriate to keep the passband errors of any anti-aliasing filter at or below this level. This is Figure 4's Butterworth filter ($f c B$) to be higher than the corner frequency of the elliptic switched-capacitor filter $\left(\mathrm{f}_{\mathrm{cE}}\right.$) by a factor of 2.5 or more. A factor of 5 or more is recommended to avoid problems with componen tolerances, i.e. $\mathrm{f}_{\mathrm{C}} \mathrm{B}>(5)(\mathrm{fcE})$.
When using the uncommitted op amp as a post-filter to reduce clock noise keep the filter's input impedanc reduce clock noise, keep the filter's input impedance above $20 \mathrm{k} \Omega$ to avoid excessive loading of the switched
capacitor filter. Note that the op amp experiences some clock feedthrough, so it is generally more useful for anti-aliasing than for clock-noise attenuation.

DAC Post-Filtering When using the MAX293/MAX294/MAX297 for DAC pos filtering, synchronize the DAC and the filter clocks. I
locks are not synchronized, beat frequencies will ailia into the desired passband. The DAC's clock should be filter's clock.

Harmonic Distortion
Harmonic distortion arises from nonlinearities within the filter. These noniinearities generate harmonics when a pure sine wave is applied to the filter input. Table 2 lists ypical harmonic distortion values for the MAX293/MAX294/MAX297 with a 1 kHz 5 Vp -p sine wave input signal, a 1 MHz clock frequency, and a $20 \mathrm{k} \Omega$ load

Table 2. Typical Harmonic Distortion (dB

FILTER	HARMONIC			
	2nd	3rd	4th	5th
MAX293	70	90	88	92
MAX294	67	90	92	94
MAX297	84	89	93	99

_ Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX294EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX294EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX294MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP**
MAX297CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX297CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX297C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX297EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX297EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX297MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP**

- Contact factory for dice specifications.
- Contact factory for availability and processing to MIL-STD-883

[^0]
[^0]: axim reserves the right to change the circuity and specifications without notice at any tim
 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600
 1992 Maxim Integrated Products Printed USA

