

The MAX291/MAX292/MAX295/MAX296 are easy-to-use 8th-order, lowpass, switched-capacitor filters that can be set up with corner frequencies from 0.1 Hz to 25 kHz (MAX291/MAX292) or 0.1 Hz to 50 kHz (MAX295/MAX296). The MAX291/MAX295 Butterworth filters provide maximally flat passband response, and the MAX292/MAX296 Bessel filters provide low overshoot and fast settling All Bessel tilters provide ow oversho so the design task is four tod to helecing the dock frequency that contros the mited to selecting the clock frequency that controls the filter's corner frequency
An external capacitor is used to generate a clock using the internal oscillator, or an external clock signal can be used. An uncommitted operational amplifier (noninverting input grounded) is provided for building a continuoustime lowpass filter for post-filtering or anti-aliasing.
Produced in an 8-pin DIP/SO and a 16 -pin wide SO package, and requiring a minimum of external components, the MAX291 series delivers very aggressive performance from a tiny area.

- 8th-Order Lowpass Filters:

Butterworth (MAX291/MAX295)
Bessel (MAX292/MAX296)

- Clock-Tunable Corner-Frequency Range
0.1Hz to 25kHz (MAX291/MAX292)
0.1 Hz to 50 kHz (MAX295/MAX296)
- No External Resistors or Capacitors Required
- Internal or External Clock
- Clock to Corner-Frequency Ratio 100:1 (MAX291/MAX292) 50:1 (MAX295/MAX296)
- Low Noise: -70dB THD + Noise (Typ
- Operate with a Single +5 V Supply or Dual $\pm 5 \mathrm{~V}$ Supplies
- Uncommited Op Amp for Anti-Aliasing or Clock Noise Filtering
- 8-Pin DIP and SO Packages

Ordering Information

PART	TEMP.	RANGE
MAX291CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PIN-PACKAGE
MAX291CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX291CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX291C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX291EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX291ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX291EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX291MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP*

Ordering Information continued on last page.
Contact faciory for dice specifications.
*"Contact factory for availability and processing to MIL-STD-883

PIn Configurations

in Wide SO on last page

Maxim Integrated Products 1
MAXIM

8th-Order, Lowpass,

Switched-Capacitor Filters

Supply Voltage ($V+$ to V-). Input Voltage at Any Pin. $\mathrm{V}-+(-0.3 \mathrm{~V}) \leq \mathrm{VIN}_{\mathrm{IN}} \leq \mathrm{V}_{+}+(0.3 \mathrm{~V})$ Coninuous Power Dissipation 8 -Pin Plastic DIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)... 727 mW B-Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).............. 471 mW 16-Pin Wide SO (derate $9.52 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 762 mW 8-Pin CERDIP (derate $8.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)....... 640 mW											
Stresses beyond those ilisted under "Absolute Maximum Ratings" may cause permantent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in theabsolute maximum rating conditions for extended periods may affect device refiability											
ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}\right.$, filter output measured at OUT pin, $20 \mathrm{k} \Omega$ load resistor to ground at OUT and OP OUT, fcLK $=100 \mathrm{kHz}$ (MAX291/MAX292) or fCLK = 50kHz (MAX295/MAX296), $T_{A}=T_{M I N}$ to TMAX, unless otherwise noted.)											
PaRAMETER	CONDITIONS		MIN	TYP	max	UNITS					
FILTER CHARACTERISTICS											
Corner-Frequency Range			0.1-25k			Hz					
	MAX295/MAX296		0.1-50k								
Clock to Corner Frequency Ratio	MAX291/MAX292		100:1								
	MAX295/MAX2		50:1								
Clock to Corner Frequency Tempco	MAX291		10			pom/c					
	MAX292										
	MAX295		5								
	MAX296			60							
Insertion Gain Relative to DC Gain	MAX291	$\mathrm{fin}^{\mathrm{N}}=0.50 \mathrm{Fo}$		-0.02	0.1	dB					
		$\mathrm{fin}=1.00 \mathrm{Fo}$	-2.2	-2.7	3.2						
		$\mathrm{fiN}^{\mathrm{N}}=2.00 \mathrm{~F}_{0}$	-43.0	-48.0							
		$\mathrm{fiN}^{\mathrm{N}}=3.00 \mathrm{~F}_{0}$	-70.0	-76.0							
	MAX292	$\mathrm{fin}^{\mathrm{N}}=0.25 \mathrm{~F}_{0}$	-0.1	-0.2	-0.3						
		$\mathrm{f}_{\mathrm{N}}=0.50 \mathrm{~F}_{0}$	-0.6	-0.8	-1.0						
		$\mathrm{f}_{\mathrm{N}}=1.00 \mathrm{~F}_{0}$	-2.7	-3.0	-3.3						
		$\mathrm{f}_{\mathrm{N}}=2.00 \mathrm{~F}_{0}$	-11.0	-13.0	-15.0						
		$\mathrm{fin}^{\mathrm{f}}=3.00 \mathrm{Fo}$	-30.0	-34.0							
		$\mathrm{fin}=4.00 \mathrm{~F}_{0}$	-47.0	-51.0							
		$\mathrm{f}_{\mathrm{N}}=6.00 \mathrm{~F}_{0}$	-74.0 -78.0								
	MAX295	$\mathrm{fin}^{\prime}=0.50 \mathrm{~F}_{0}$									
		$\mathrm{f}_{\mathrm{N}}=1.00 \mathrm{~F}_{0}$	$\begin{array}{lll}-2.2 & -2.7 & -3.2 \\ -43.0 & -48.0 & \end{array}$								
		$\mathrm{fin}^{\mathrm{i}}=2.00 \mathrm{Fo}$									
		$\mathrm{fin}^{\mathrm{N}=3.00 \mathrm{~F}_{0}}$	-70.0 -76.0								
	MAX296	$\mathrm{fiN}=0.25 \mathrm{~F}_{0}$	-0.1	-0.2	-0.3						
		$\mathrm{fin}^{\mathrm{N}}=0.50 \mathrm{~F}_{0}$	-0.6	-0.8	-1.0						
		$\mathrm{f}_{\mathrm{N}}=1.00 \mathrm{~F}_{0}$	-2.7	-3.0	3.3						
		$\mathrm{f}_{\mathrm{N}} \mathrm{N}=2.00 \mathrm{~F}_{0}$	-11.0	-13.0	-15.0						
		$\mathrm{fin}^{\mathrm{N}}=3.00 \mathrm{Fo}$	-30.0	-34.0							
		$\mathrm{fin}^{\mathrm{i}}=4.00 \mathrm{~F}$ 。	-47.0	-51.0							
		$\mathrm{fin}=6.00 \mathrm{~F}_{0}$	-74.0	-78.0							
MAXIM											

8th-Order, Lowpass, Switched-Capacitor Filters

ELECTRICAL CHARACTERISTICS (continued)
$(\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$, filter output measured at OUT pin, 20k Ω load resistor to ground at OUT and OP OUT, fCLK $=100 \mathrm{kHz}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output DC Swing		± 4			V
Output Offset Voltage	$\mathrm{IN}=\mathrm{GND}$		± 150	± 400	mV
DC Insertion Gain Error with Output Offset Removed		0.15	0	-0.15	dB
Total Harmonic Distortion plus Noise	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{fCLK}=100 \mathrm{kHz}$		-70		dB
Clock Feedthrough	fCLK $=100 \mathrm{kHz}$		6		mVp-p
CLOCK					
Internal Oscillator Frequency	Cosc $=1000 \mathrm{pF}$	29	35	43	kHz
Internal Oscillator Current Source/Sink	VCLK $=0 \mathrm{~V}$ or 5 V		± 70	± 120	$\mu \mathrm{A}$
Clock Input (Note 1) High		4.0			V
Low				1.0	V
UNCOMMITTED OP AMP					
Input Offset Voltage			± 10	± 50	mV
Output DC Swing		± 4			V
Input Bias Current			0.05		$\mu \mathrm{A}$
POWER REQUIREMENTS					
Supply Voltage Dual Supply		± 2.375		± 5.500	V
Single Supply	$\mathrm{V}-\mathrm{=O} \mathrm{~V}, \mathrm{GND}=\mathrm{V} \pm 2$	4.750		11.000	V
Supply Current	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{VCLK}=0 \mathrm{~V}$ to 5 V		15	22	mA
	$\mathrm{V}+=2.375 \mathrm{~V}, \mathrm{~V}-=-2.375 \mathrm{~V}, \mathrm{~V}_{\text {CLK }}=-2 \mathrm{~V}$ to 2 V		7	12	

Typical Operating Characteristics
CLK $=50 \mathrm{kHz}$ (MAX295/MAX296), unless otherwise noted.)
$\left(\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, fCLK $=100$
HIERMNL OSCULATOR PERIOO ws.
MTERMA Oscilator period
capactinice value

MOPMMLITE MTERMAL OSCHLLTO
FREOUENCY vs. TEMPERATUPE

MAXIM \qquad

8th-Order, Lowpass, Switched-Capacitor Filters

8th-Order, Lowpass, Switched-Capacitor Filters

Typical Operating Characteristics (continued)

$\left(\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{RLOAD}=5 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

8th-Order, Lowpass,

 Switched-Capacitor Filters

Detailed Description
Lowpass Butterworth filters such as the MAX291/ MAX295 provide maximally flat passband response, making them ideal for instrumentation applications that require min Lom Lowpass Bessel filters such as the mally, preserving the delay all frequency components equally, preserving the
shape of step inputs, subject to the attenuation of the highshape of step inputs, subject to the attenuation of the highters. Faster settling can be important in applications that use a multiplexer (mux) to select one signal to be sent to an analog-to-digital converter (ADC)-an anti-aliasing filter placed between the mux and the ADC must settle quickly after a new channel is selected by the mux.
The difference in the filters' responses can be observed when a 3 kHz square wave, is applied to the filter input (Figure 1, trace A). With the filter cutoff frequencies set at 10kHz, trace C shows the MAX291/MAX295 Butterworth filter response and trace B shows the MAX292/MAX296 Bessel filter response. Since the MAX292/MAX296 have a linear phase response in the passband, all frequency components are delayed equally, which preserves the square wave. The filters attenuate higher frequencies of the input square wave, giving rise to the rounded edges at the output. The MAX291/MAX295 delay different frequency components by varying times, causing the overshoot and ringing shown in trace C .

Figure 1. Bessel vs. Butterworth Filter Responses
The MAX291/MAX295 give more attenuation outside the passband. The phase and frequency response curves in the Typical Operating Characteristics reveal the differences between the two types of filters.
MAX291/MAX292/MAX295/MAX296 phase shift and gain do not vary significantly from part to part. Typical phase shitt and gain differences are less than 0.5% at the corner frequency (FC).

Corner Frequency and Filtor Attenuation The MAX291/MAX292 operate with a 100:1 clock to corner frequency ratio and a 25 kHz maximum corner frequency, where corner frequency is defined as the point where the filter output is 3dB below the filter's DC gain. The MAX25. Max with a 50 kHz maximum corn tre quen 8 pil

Background Information
Most switched-capacitor filters are designed with biquadratic sections. Each section implements two filtering poles, and the sections can be cascaded to produce high-er-order filters. The advantage to this approach is ease of design. However, this type of design can display poor sensitivity if any section's Q is high.
An alternative approach is to emulate a passive network using switched-capacitor integrators with summing and scaling. The passive network can be synthesized using CAD programs, or can be found in many filter books. Figure 2 shows the basic ladder filter structure.
A switched-capacitor filter that emulates a passive ladder filter retains many of its advantages. The filter's component sensitivity is low when compared to a cascaded biquad design because each component affects the entire filter shape, not just one pole pair. That is, a mismatched component in a biquad design will have a concentrated

8th-Order, Lowpass, Switched-Capacitor Filters

Figure 2. Bth-Order Ladder Filter Network
error on its respective poles, while the same mismatch ladder filter design will spread its error over all poles.
The MAX291/MAX292/MAX295/MAX296 input impedance is effectively that of a switched-capacitor resistor ance is effectively that of a switched-capacitor resistor (see equation below, and Table 1), and it is inversely
proportional to frequency. The input impedance values proportional to frequency. The input impedance values determined below represent average input impedance, sent flows in a series of pulses that charge the input capacitor every time the appropriate switch is closed. A good rule of thumb is that the driver's input source resistance should be less than 10% of the filter's input impedance. The input impedance of the filter can be estimated using the following formula:

$$
Z=1 /(\text { fCLK } * C)
$$

where: fCLK = Clock Frequency
The input impedance for various clock frequencies is given below:
Table 1. Input Impedance for Various Clock Frequencies

PART	$\mathbf{C}(\mathbf{p F})$	$\mathbf{1 0 k H z} \Omega$	$\mathbf{1 0 0 k H z} \Omega$	$\mathbf{1 0 0 0} \mathbf{k H z \Omega}$
MAX291	2.24	44.6 M	4.46 M	446 k
MAX292	3.28	30.5 M	3.05 M	305 k
MAX295	4.47	22.4 M	2.24 M	224 k
MAX296	4.22	23.7 M	2.37 M	237 k

Clock-Signal Requirements The MAX291/MAX292/MAX295/MAX296 maximum rec ommended clock frequency is 2.5 MHz , producing a cutof frequency of 25 kHz for the MAX291/MAX292 and 50 kHz for the MAX295/MAX296. The CLK pin can be driven by an external clock or by the internal oscillator with an external capacitor. For external clock applications, the clock circuitry has been designed to interface with +5 V CMOS logic. Drive he CLK pin with a CNins gate powered from +5 V supplies. The MAX291/MAX292/MAX295/MAX296 supply current increases slighly ($<3 \%$) with increasing

Figure 3. $+5 V$ Single-Supply Operation
lock frequency over the clock range 100 kHz to 1 MHz varying the rate of an external clock will dynamically ad ust the corner frequency of the filter.
Ideally, the MAX291/MAX292/MAX295/MAX296 should be clocked symmetrically (50% duty cycle). MAX291 MAX292/MAX295/MAX296 can be operated with clock asymmetry of up to $60 / 40 \%$ (or $40 / 60 \%$) if the clock remains HIGH and LOW for at least 200 ns . For exampie if the part has a maximum clock rate of 2.5 MHz , then the clock should be high for at least 200ns, and low for at least 200 ns .
When using the internal oscillator, the capacitance (COSC) on the CLK pin determines the oscillator frequency:

$$
\mathrm{fosc}_{\mathrm{OS}}(\mathrm{kHz}) \approx \frac{10^{5}}{3 \operatorname{Cosc}_{\mathrm{OSC}}(\mathrm{pF})}
$$

The stray capacitance at CLK should be minimized be cause it will affect the internal oscillator frequency

Application Information either dual or single power supplies. The dual-supply vol age range is +2.375 V to +5.500 V . The $\pm 2.5 \mathrm{~V}$ dual supply s equivalent to single-supply operation (Figure 3). Mine pertomance co sistor divider network where the GND pin is biased to mid-supply

Input Signal Range

The ideal input signal range is determined by observing what voltage level the total harmonic distortion plus nois (THD + Noise) ratio is maximized for a given corner frequency. The Typical Operating Characteristics show the MAX291MAX292/MAX295/MAX296 THD + Noise response as the input signal's peak-to-peak amplitude is varied.

Uncommitted Op Amp
The uncommitted op amp has its noninverting input tied to the GND pin, and can be used to build a 1st-or 2nd-

8th-Order, Lowpass,

 Switched-Capacitor Filters

Pin Configuration is 8 -pin DIP.
Figure 4. Uncommitted Op Amp Configured as a 2nd-Order Butterworth Lowpass Filter ($F_{a}=10 \mathrm{kHz}$)
order continuous lowpass filter. This filter is convenient for anti-aliasing applications, or for clock noise attenuation at the switched-capacitor filter's output. Figure 4 shows a 2nd-order lowpass Butterworth filter built using the uncommitted op amp with a 10 kHz corner frequency. This filter's input resistance of 22 k satisfies the minimu oad requirements of the switched-capacitor filter
The uncommitted Op Amp (with a 2 MHz gain bandwidth product) can alternatively be used at the input of
the switched-capacitor filter to help reduce any possible clock ripple feedthrough to the output

DAC Post-Filtering

When using the MAX291/MAX292/MAX295/MAX296 for DAC post-filtering synchronize the DAC and the filter clocks If clocks are not synchronized beat frequencies will alias into the desired passband. The DAC's clock should be generated by dividing down the switched-capacitor filter's clock.

Harmonic Distortion
Harmonic distortion arises from nonlinearities within the filters. These nonlinearities generate harmonics when a pure sine wave is applied to the filter input. Table 2 lists typical harmonic distortion values for the MAX291/ MAX292/MAX295/MAX296 with a 1 kHz 5 Vp -p sine-wave input signal, a 1 MHz clock frequency, and a $5 \mathrm{k} \Omega$ load.
Table 2. Typical Harmonic Distortion (dB)

Harmonic					
Filter		2nd	3rd	4th	5th
	MAX291	-72	-78	-83	-89
	MAX292	-71	-82	-82	-88
	MAX295	-93	-86	-92	-97
	MAX296	-71	-89	-96	-96

Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX295CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX295CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX295C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX295EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX295EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX295MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP**
MAX296CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX296CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX296C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX296EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX296EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX296MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP**

Contact factory for dice specifications.

* Contact factory for availability and processing to MIL-STD-883

Pin Configurations (continued)

