CMAXINV
 Quad SPST CMOS Analog Switches

Quad SPST CMOS Analog Switches

MAX332/DG202/DG212

ABSOLUTE MAXIMUM RATINGS (DG212)

ELECTRICAL CHARACTERISTICS (DG212)

/ИAXI/V

Quad SPST CMOS Analog Switches

- Significantly Reduced Power Consumption
- Third (Logic) Supply Not Required

Fault Protected

(

Quad SPST CMOS Analog Switches

ABSOLUTE MAXIMUM RATINGS（DG202）

```
    Voltages Referenced to v
```

ELECTRICAL CHARACTERISTICS (DG202)

Note 6: The algebraic convention whereby the most negative value is a minimum, and the most positive is a maximum, is used in this
Note 7: Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing
$\begin{array}{lll}\text { Note } 8: & \mathrm{I}_{\mathrm{D}(0 n)} \text { i } \text { ileakage from driver into " } O N \text { " switch. }\end{array}$
The 日lectrical characteristios above are a reproduction of a portion of Siliconix's copyrighted 1985 data book. This information does not constitute any
representation by Maxim that Siliconix's products will perform in accordance with these specifications. The "Electrical Characteristics Table' along with
representation by Maxim that Sillconix's products will perform in accordance with these specifications. The "Electrical Charactoristsics Tabie" along with
cescriptive excerpots trom the original manufacturer's data sheet have been included in this data sheet solely for comparative purposes.

MANXIM

Quad SPST CMOS Analog Switches

- Significantly Reduced Power Consumption Lower Input Current Over Temperature
- No Input Current Spike

ABSOLUTE MAXIMUM RATINGS (MAX332, DG202): This device conforms to the Absolute Maximum Ratings on the adjacent page

ELECTRICAL CHARACTERISTICS (MAX332, DG202): specifications below satisfy or exceed all "tested" parameters on adjacent page.

	PARAMETER	SYMBOL	TEST CONDITIONS			LIMITS						UNITS	
						MAX332/DG202A			DG202B,C				
						$\begin{gathered} \text { MIN } \\ \text { (Note 6) } \end{gathered}$	$\begin{gathered} \text { TYP } \\ (\text { Note } 7) \end{gathered}$	MaX	$\begin{gathered} \text { MIN } \\ \text { (Note 6) } \end{gathered}$	$\begin{gathered} \text { TYP } \\ \text { (Note } 7) \end{gathered}$	MAX		
$\begin{aligned} & \text { T } \\ & \stackrel{U}{5} \\ & \frac{1}{3} \end{aligned}$	Analog Signal Range	$V_{\text {ANALOG }}$				-15		15	-15		15	v	
	Drain-Source ON Resistance (Note 9)	${ }^{\text {ros (on) }}$	$V_{D}= \pm 10 V_{1}$	$=2.4 \mathrm{~V}$	$\mathrm{s}_{\mathrm{s}}=1 \mathrm{~mA}$		115	175		115	200	Ω	
	Source OFF Leakage	$\mathrm{I}_{\text {S (off) }}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	$V_{S}=14$	$V_{1} V_{D}=-14 \mathrm{~V}$		0.01	1.0		0.01	5.0	nA	
	Current			$V_{S}=-1$	$14 V_{1} V_{0}=14 \mathrm{~V}$	-1.0	-0.02		-5.0	-0.02			
	Drain OFF Leakage Current	10 (off)	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	$V_{S}=14$	$V_{1} V_{D}=-14 \mathrm{~V}$		0.01	1.0		0.01	5.0		
				$V_{S}=-1$	$4 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-1.0	-0.02		-5.0	-0.02			
	Drain ON Leakage Current (Note 8)	$I_{\text {d (on) }}$	$\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.4 \mathrm{~V}$				0.1	1.0		0.1	5.0		
			$\mathrm{V}_{\mathrm{D}}=14 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.4 \mathrm{~V}$			-1.0	-0.15		-5.0	-0.15			
	Input Current With Input Voltage High	IINH	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			-1.0	-0.0004		-1.0	-0.0004		$\mu \mathrm{A}$	
$\begin{aligned} & 5 \\ & \hline 1 \end{aligned}$			$\mathrm{V}_{1 \mathrm{~N}}=15 \mathrm{~V}$				0.003	1.0		0.003	1.0		
	Input Current With Input Voltage Low	IINL	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$			-1.0 -0.0004			-1.0 -0.0004				
$\begin{aligned} & \frac{0}{\sum_{4}^{2}} \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$	Turn-ON Time	$\mathrm{t}_{\text {on }}$	See Switching Time Test Circuit				480	600		480	600	ns	
	Turn-OFF Time	$\mathrm{t}_{\mathrm{OfH}_{1}}$					370	450		370	450		
	Charge Injection	Q	$\begin{gathered} C_{L}=1000 \mathrm{p} F_{1} V_{G E N}=0 \mathrm{~V}, \\ R_{G E N}=0 \Omega \end{gathered}$			20			20			pC	
	Source OFF Capacitance	$\mathrm{C}_{\mathrm{S}_{\text {(oft }}}$	$\mathrm{V}_{\mathrm{S}}=O \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}$		$\mathrm{f}=140 \mathrm{kHz}$		5			5		pF	
	Drain OFF Capacitance	$\mathrm{C}_{\mathrm{D} \text { (ott) }}$				5		5					
	Channel ON Capacitance	$\begin{aligned} & \mathrm{C}_{\mathrm{D}_{\text {(on) }}}+{ }^{+} \\ & \mathrm{C}_{\mathrm{S} \text { (on) }} \end{aligned}$	$v_{0}=v_{S}=0 \mathrm{~V}, v_{\text {IN }}=5 \mathrm{~V}$			16			16				
	OFF Isolation		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{Z}_{\mathrm{L}}=75 \mathrm{k} \Omega$			70			70			dB	
	Crosstalk (Channel to Channel)		$V_{\text {S }}=2.0 \mathrm{~V}, f=100 \mathrm{kHz}$			90			90				
2 $\frac{2}{2}$ $\frac{2}{2}$	Positive Supply Current	1^{+}	All Channels ON or OFF			0.02		0.1	0.02		0.1	mA	
	Negative Supply Current	$1-$	All Channels ON or OFF			-0.1 -0.01			-0.1 -0.01				
	Power Supply Range for Continuous Operation	$\mathrm{V}_{\text {OP }}$				± 4.5		± 18	± 4.5		± 18	v	
Note 6: The algebraic conventio data sheet. Note 7: Typical values are for D Note 8: $I_{D(o n)}$ is leakage from drive Note 9: Electrical characteristic		whereby	most nega	ve value		is a minimu	m, and	the most	positiv	is a m	maximum	, is us	ed in this
		IGN AID into "ON" uch as O	NLY, not guar switch. Resistance,	ill chang	or subject to e when pow	productio suppli	ion other	than \pm	15 V a are	used.			

Quad SPST CMOS Analog Switches

The electrical characteristics above are a reproduction of a portion of Siliconix's copyrighted 1985 data book. This information doos not constitute any
representation by Maxim hat Silliconix's products will pertorm in accordance with these specitications. The "Electrical Characteristics Tabie" along with representation by Maxim that Siliconix's products wifl perform in accordance with these specitications. The "Electrical Characteristics Tabie" along with
descriptive excerpts from the original manufacturer's cata sheet have been included in this data sheet solaly for comparative purposes.

Switching Time Test Circuit
Switch output waveform shown for $V_{S}=$ constant $\quad V_{O}$ is the steady state output with switch on. Feedwith logic input waveform as shown. Note that V_{S} through via gate capacitance may result in spikes at with logic enput waveform as shown. Note that V_{S}.
may

Typical RDS(ON) vs. Power Supplies for Maxim's MAX332, DG202/DG212

POWER SUPPLIES	$\mathrm{R}_{\text {ds(ON) }}$ at Analog signal Level					
	$-5 \mathrm{~V}$	+5V	-10V	+10V	-15V	+15V
$\pm 5 \mathrm{~V}$	350Ω	380Ω				
$\pm 10 \mathrm{~V}$			165Ω	250Ω		
$\pm 15 \mathrm{~V}$			125Ω	160Ω	1358	155Ω

Quad SPST CMOS Analog Switches

ELECTRICAL CHARACTERISTICS（MAX332，DG202）：

[^0]Protecting Against Fault Conditions

Fault conditions occur when power supplies are turned off when input signals are still present o when over voltages occur at the inputs during normal operation．In either case，source－to－body diodes can be forward biased and conduct current from the signal source．If this current is required to be kept to ow（ $\mu \mathrm{A}$ ）levels then the addition of external protec－ tion diodes is recommended．
To provide protection for over－voltages up to 20 V above the supplies，a N4001 or 1 N914 type dode shoutive suplies as shown in Fig the poddition hese diodes will reduce the analog signal range to 1 volt below the positive supply and 1 volt above the negative supply．

Figure 1．Protection Against Fault Conditions

Quad SPST CMOS Analog Switches

[^0]: Note 10：Dion is leakage from driver into＂ON＂switch．
 Note 11：Electrical characteristics，such as ON Resistance，will change when power supplies other than $\pm 15 \mathrm{~V}$ ，are used．

