

The MAX505 and MAX506 are CMOS, quad, 8-bit voltageoutput digital-to-analog converters (DACs) The parts output digital-to-analog converters (DACs). The parts operate with a single +5 V supply or dual $\pm 5 \mathrm{~V}$ supplies. Internal, precision output buffers swing rail-to-rai
reference input range includes both supply rails.
Offset, gain, and linearity are factory calibrated to provide Offset, gain, and linearity are factory calibrated to provide 1LSB total unadjusted error (TUE) over the full operating temperature range.
The MAX505 contains double-buffered logic inputs, which allow all analog outputs to be simultaneously updated using the asynchronous load DAC ($\overline{\mathrm{LDAC}}$) control signal. The MAX505 also has four separate reference inputs, allowing each DAC's full-scale range to be independently set.
The MAX506 has separate input latches for each of its four DACs. Data is transferred to the input latches from a common 8-bit input port. The DACs are individually selected through address inputs $A 0$ and $A 1$, and updated by bringing $\overline{W R}$ low. All MAX506 DACs share a common reference input. All logic inputs are TTL and +5 V CMOS compatible.

Applications

Minimum Component Count Analog Systems Digital Offsel/Gain Adjustment
Arbitrary Function Generator
Industrial Process Control
Automatic Test Equipment
Programmable Attenuators
Functional Diagrams

ММХІص
Call toll free 1-800-998-8800 for free samples or Ifterature.

Quad 8-Bit DACs with Rail-to-Rail Voltage Outputs

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional
Speration of the device at these or anyother conditions beyond those indicated in the operational sections of the specifications is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VDD}=+5 \mathrm{~V} \pm 10 \%, \mathrm{VSS}=0 \mathrm{~V}\right.$ to $-5.5 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{VREF}=4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless

PARAMETER	SYMBOL	CONDTIONS		MIN	TYP	MAX	UNTS
STATIC ACCURACY							
Resolution				8			Bits
Total Unadjusted Error	TUE	$\begin{aligned} & \text { VREF }=+4 \mathrm{~V}, \\ & \mathrm{VSS}=0 \mathrm{~V} \text { or }-5 \mathrm{~V} \pm 10 \% \end{aligned}$	MAX50_A			± 1	LSB
			MAX50_B			$\pm 11 / 2$	
		$\begin{aligned} & \text { VREF }=-4 V, \\ & V S S=-5 V \pm 10 \% \end{aligned}$	MAX50_A			± 1	
			MAX50_B			$\pm 11 / 2$	
Differential Nonlinearity	DNL	Guaranteedmonotonic				± 1	LSB
Zero-Code Error	ZCE	$\begin{aligned} & \text { Code }=00 \text { hex } \\ & V S S=0 \mathrm{~V} \end{aligned}$	MAX50_C			14	mV
			MAX50_E			16	
			MAX50_M			20	
		$\begin{aligned} & \text { Code }=00 \text { hex } \\ & \mathrm{V} S S=-5 \mathrm{~V} \pm 10 \% \end{aligned}$	MAX50_C			± 14	
			MAX50_E			± 16	
			MAX50_M			± 20	
Zero-Code Error Supply Rejection		$\begin{aligned} & \text { Code }=00 \text { hex } \\ & V D D=5 V \pm 10 \% \\ & \text { VSS }=0 \mathrm{~V} \text { or }-5 \mathrm{~V} \pm 10 \% \end{aligned}$			1	2	mV
Zero-Code Temperature Coefficient		Code $=00$ hex			± 10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Full-Scale Error		Code = FF hex				± 14	mV
Full-Scale Error Supply Rejection		$\begin{aligned} & \text { Code }=\text { FF hex } \\ & V D D=+5 V \pm 10 \%, \\ & V S S=0 V \text { or }-5 V \pm 10 \% \end{aligned}$	MAX50_C		1	4	mV
			MAX50_E		1	8	
			MAX50_M			12	
Full-Scale-ErrorTemperature Coefficient		Code $=$ FF hex			± 10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Quad 8-Bit DACs with

 Rail-to-Rail Voltage OutputsELECTRICAL CHARACTERISTICS (continued)

Quad 8-Bit DACs with

Rail-to-Rail Voltage Outputs

ELECTRICAL CHARACTERISTICS (continued)

Note 2: Input resistance is code dependent. The lowest input resistance occurs at code $=55$ hex.
Note 3: Input capacitance is code dependent. The highest input capacitance occurs at code $=00$ hex
Note 4: VREF $=10 \mathrm{kHz}, 4 \mathrm{Vp}$. Channelto-channel isolation is measured by setting the code of one DAC to FF hex and setting the
Note 5: $V R E F=10 \mathrm{kHz}, 4 \mathrm{Vp}$ p. p . DAC code $=00$ hex.

\qquad Typical Operating Characteristics

Quad 8-Bit DACs with Rail-to-Rail Voltage Outputs

Typical Operating Characteristics (continued)
THD + NOISE AT DAC OUTPUT

DIGITAL FEEDTHROUGH-
GLTCH IMPULSE
OTO CIGTIALTRANSITION)

OTO1 DIGITAL TRANSIIION ON
ALL OATABIS (WTH WWHIGH)

DIGTAL FEEDTHROUGH GLTICH IMPULSE (1 TO
DIGITAL TRANSTION)

$\mathrm{A}=$ OIGITAL INPUTS, $5 \mathrm{~V} / \mathrm{div}$
$A=V$ OUAA 1 momV/div
$B=1 M E B A S E=1 \mu \mathrm{~s}$
1 TOODIGITAL TRANSIIIONON
ALDAATBTIS
VREEA $=$ AGND

Quad 8-Bit DACs with

 Rail-to-Rail Voltage Outputs

Quad 8-Bit DACs with Rall-to-Rail Voltage Outputs

PIN		NAME	FUNCTION
MAX505	MaX506		
1	1	Voutr	DAC B Output Voltage
2	2	Vouta	DAC A Output Voltage
3	3	VSS	Negative Power Supply
4		VREFB	Reference Voltage Input for DAC B
	4	VREF	Reference Voltage Input for DAC A to DAC D
5		VREFA	Reference Voltage Input for DAC A
6	5	AGND	Analog Ground
7	6	DGND	Digital Ground
8		$\overline{\text { LDAC }}$	Load DAC Input (active low). Driving this asynchronous input low transfers the contents of each input latch to its respective DAC latch.
9	7	D7	Data Bit 7 (MSB)
10	8	D6	Data Bit 6
11	9	D5	Data Bit 5
12	10	D4	Data Bit 4
13	11	D3	Data Bit 3
14	12	D2	Data Bit 2
15	13	D1	Data Bit 1
16	14	DO	Data Bit 0 (LSB)
17	15	\bar{W}	Write Input (active low). Used to load data into the DAC input latch selected by A0 and A1.
18	16	A1	DAC Address select bit (MSB)
19	17	AO	DAC Address select bit (LSB)
20		VREFD	Reference Voltage Input for DAC D
21		VREFC	Reference Voltage Input for DAC C
22	18	VDD	Positive Supply Voltage
23	19	Vouto	DAC D Output Voltage
24	20	Voutc	DAC C Output Voltage

Quad 8-Bit DACs with

Rail-to-Rail Voltage Outputs

Figure 1. DAC Simplified Circuit Diagram

Power Supplies and Reforence Input
The MAX505/MAX506 can be used for multiplying applications. The reference accepts both DC and $A C$ signals. The voltage at each VREF input sets the full-scale output voltage for its respective DAC. The VREF input impedance is code dependent, with the lowest value ($16 \mathrm{k} \Omega$ for the MAX505 and $4 \mathrm{k} \Omega$ for the MAX506) occuring when the input code is 55 hex The maximum value, essentially infinity, occurs when
the input code is 00 hex. Since the VREF input im pedance is code dependent, the DACs' reference sources must have a low output impedance (no more than 32Ω for the MAX505 and 8Ω for the MAX506) to maintain output linearity. The VREF input capacitance is also code dependent: 15 pF maximum for the MAX505 and 40pF maximum for the MAX506. The output voltage for any DAC can be represented by a digitally programmable voltage source as:

VOUT $=\left(N_{B} \times\right.$ VREF $) / 256$
where NB_{B} is the numeric value of the DAC's binary input code.

Output Buffor Ampllifiors

All MAX505/MAX506 voltage outputs are internally buffered by precision unity-gain followers that slew at $1 \mathrm{~V} / \mu \mathrm{s}$ With a 0 V to +4 V (or +4 V to 0 V) output transition, the amplifier outputs will settle to $1 / 2$ LSB in typically $6 \mu \mathrm{~s}$ when loaded with $10 \mathrm{k} \Omega$ in parallel with 100 pF .
The buffer amplifiers are stable with any combination of resistive loads $\geq 2 \mathrm{k} \Omega$ and capacitive loads $\leq 300 \mathrm{pF}$

Digital Inputs and Interface Loglc
The digital inputs are compatible with both TTL and 5 V CMOS logic. However, the power-supply current (IDD) depends on the input logic levels. Supply current is specified for CMOS input levels (best case). Supply current increases by about 2 mA when driven with TTL logic levels.
Address lines A0 and A1 select which DAC receives data from the data bus as shown in Table 1. When WR is low the addressed DAC's input latch is transparent. Data is latched when $\overline{W R}$ is high. Figure 2 shows the MAX505/MAX506 input control logic.
The MAX506 DAC outputs represent the data held in the four 8 -bit input latches. The MAX505 has doublebuffered inputs; in addition to the input registers, there are individual DAC latches (see Functional Diagrams).
\qquad

Quad 8-Bit DACs with Rail-to-Rail Voltage Outputs

Figure 2. MAX505MAX506 input Control Logic

In the MAX505, data is transferred from the input latches to the DAC latches by pulling the LDAC control input low. This operation simultaneously updates all four outputs. Since LDAC is asynchronous with respect to WR , be sure that incorrect data is not latched to the output. Table 1 a is the write-cycle truth table for the MAX505 Table 1b is the write-cycle truth table for the MAX506. Figure 3 shows the MAX505/MAX50 write-cycle timing. If simultaneous updating is no required, tie $\overline{\text { LDAC }}$ low to keep the DAC latches transparent. To avoid output glitches, insure that data is valid before WR goes low (MAX506). This also applies
 On power-up, all MAX505/MAX506 latches are internally preset with all os.
Table 1a. MAX505 DAC Addressing
(partial list)

$\overline{\text { LDAC }}$	WR	A1	A0	LATCH sTATE
H	H	X	X	Input and DAC data latched
H	L	L	L	DAC A input latch transparent
L	H	X	X	All 4 DACs' DAC latches transparent
L	L	L	L	DACA Ainput registers transparent and all 4 DAC' DAC latches transparent
H	L	L	H	DAC B input latch transparent
H	L	H	L	DAC C input latch transparent
H	L	H	H	DAC D input latch transparent

MAX505/MAX506
$\mathrm{H}=$ High State, $\mathrm{L}=$ Low State, $\mathrm{X}=$ Don't Care

Table 1b. MAX506 DAC Addressing (partial list)

WR	A1	AO	LATCH STATE
H	X	X	Input data latched
L	L	L	DAC A input latch transparent
L	L	H	DAC B input latch transparent
L	H	L	DAC C input latch transparent
L	H	H	DAC D input latch transparent

$H=$ High State, $L=$ Low State, $X=$ Don't Care

Quad 8-Bit DACs with

Rail-to-Rail Voltage Outputs

Figure 3. MAX505/MAX506 Write-Cycle Timing Diagram
\qquad Applications Information
Power Supply and Reforence Operating Ranges The MAX505/MAX506 are fully specified to operate with The MAX 50%. VDO $=5 \mathrm{~V} \pm 10 \%$ and VSS $=0 \mathrm{~V}$ to-5.5V. 8-bit performanc is guaraneed 14 mV when operating from a single +5 V supply
The DACs work well with reference voltages from VSS to VDD VSS should never be more positive than either AGND or DGND. No input should be more positive than VDD

Powor-Supply Bypassing and Ground Management In single-supply operation (AGND = DGND = VSS = OV) AGND, DGND, and VSS should be connected together in "star" ground at the chip. This ground should then return to the highest quality ground available. Bypass VDD with 0.1μ capacitor, located as close to VDD and AGND as possible. In dual-supply operation, where DGND = AGND, VDD and Vss should be bypassed with $0.1 \mu \mathrm{~F}$ capacitors to AGND These capacitors should be placed as close to the supply pins as possible. To minimize digital noise on AGND DGND and AGND should have separate return paths to the highest quality ground available.

Careful PCB layout minimizes crosstalk between DAC Careful PCB layout minimizes crosstalk between DAC and 5 show suggested circuit board layouts to minimize crosstalk.

Figure 4. Suggested MAX505 PCB Layout for Minimizing Crosstalk
\qquad

Quad 8-Bit DACs with Rail-to-Rail Voltage Outputs

Unipolar Output,

2-Quadrant Multiplication
In unipolar operation, the output voltages and the referIn unipolar operation, the output voltages and the reference input(s) are the same polarity. Figures 6 and 7 show the MAX505/MAX506 unipolar configurations. If the reference inputs are positive, both devices can be operated
from a single supply. If dual supplies are used, the from a single supply. If dual supplies are used, the reference input can vary from VSS to VDD. Table 2 is the unipolar code table.

Bipolar Output,
2-Quadrant Multipllcation
Bipolar output 2-quadrant multiplication is achieved by offsetting AGND positively or negatively

Offsetting AGND Positively Single or Dual Supplies
AGND can be biased above DGND to provide an arbitrany nonzero output voltage for a 0 input code, as shown in Figure 8. The output voltage at VOUTA is:

$$
\text { VOUTA }=V_{B I A S}+(N B / 256)\left(V_{I N}\right)
$$

where NB represents the digital input word. Since AGND is common to all four DACs, all outputs will be offset by VBIAS in the same manner. AGND should not be biased more than +1V above DGND

Figure 6. MAX505 Unipolar Output Circuit

Figure 7. MAX506 Unipolar Output Circuit

Quad 8-Bit DACs with

Rail-to-Rail Voltage Outputs

Note: 1 LSB $=($ VREF $)\left(2^{-8}\right)=+$ VREF $\left(\frac{1}{256}\right)$
Offsetting AGND Negatively - Dual Supplies
An alternate method of generating bipolar outputs use An alternate method of generating bipolar outputs uses Figure 9's circuits. In these circuits, AGND is biased negatively (up to -2.5 V with respect to DGND) to provide an arbitrary negative output voltage for a 0 input code. The output voltage at VOUTA is:

VOUTA $=-($ R2/R1) $(2.5 \mathrm{~V})+$
$(\mathrm{NB} / 256)(2.5 \mathrm{~V})(\mathrm{R} 2 / \mathrm{R} 1+1)$
where NB represents the digital input word. Since AGND is common to all four DACs, all outputs will be offset by VBIAS in the same manner. Table 3, with VREF $=2.5 \mathrm{~V}$ shows the digital code vs. output voltage for Figure 9's circuits with R1 = R2.

4-Quadrant Multiplication
Each DAC output may be configured for 4-quadran multiplication using Figure 10's circuit One 0 amp and two resistors are required per channel. With R1 = R2. VOUT $=$ VREF [(2)(NB/256) -1]
where NB represents the digital word in DAC register A
Recommended values for resistors R1 and R2 are 330 kS ($\pm 0.1 \%$). Table 3 shows the digital code vs. output volt age for Figure 10's circuit.

Table 3. Bipolar Code Table

DAC CONTENTS		ANALOG OUTPUT
MSB	LSB	
1111	1111	VREF $\left(\frac{127}{128}\right)$
1000	0001	VREF $\left(\frac{1}{128}\right)$
1000	0000	OV
0111	1111	-VREF $\left(\frac{1}{128}\right)$
0000	0001	-VREF $\left(\frac{127}{128}\right)$
0000	0000	-VREF $\left(\frac{128}{128}\right)=-$ VREF

Figure 8. AGND Bias Circuits (Positive Offset)
\qquad

Quad 8-Bit DACs with
 Rail-to-Rail Voltage Outputs

Quad 8-Bit DACs with

Rail-to-Rail Voltage Outputs

Figure 10a. Max505 Bipolar Output Circuit

Figure 10b. MAX506 Bipolar Output Circuit
14

Quad 8-Bit DACs with

Rail-to-Rail Voltage Outputs

Ordering Information

PART	temp.range	PIN-PACKAGE	$\begin{gathered} \left.\mathrm{TUE}_{(\mathrm{TSE}}^{\mathrm{LSB}}\right) \end{gathered}$
MAX505AENG	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24Narow Prasic.IP	± 1
MAX505BENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24Narow Fasicidip	$\pm 11 / 2$
MAX505AEWG	$-40^{\circ} \mathrm{C}$ to +85	24 Wide SO	± 1
MAX505BEWG	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO	$\pm 11 / 2$
MAX505AEAG	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 SSOP	± 1
MAX505BEAG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 SSOP	$\pm 11 / 2$
MAX505AMRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Namow Cradipm	± 1
MAX505BMRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Narow Ceraipm	
MAX506ACPP	$0^{\circ} \mathrm{C}$ 10 $+70^{\circ} \mathrm{C}$	20 Plastic DIP	± 1
MAX506BCPP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plastic DIP	$1 / 2$
MAX506ACWP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Wide SO	± 1
MAX506BCWP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Wide SO	$\pm 11 / 2$
MAX506BC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*	$\pm 11 / 2$
MAX506AEPP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Plastic DIP	± 1
MAX506BEPP	$-40^{\circ} \mathrm{C}$ to $+855^{\circ} \mathrm{C}$	20 Plastic DIP	$\pm 11 / 2$
MAX506AEWP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Wide SO	± 1
MAX506BEWP	$-40^{\circ} \mathrm{C}$ to $+855^{\circ} \mathrm{C}$	20 Wide SO	$\pm 11 / 2$
MAX506AMJP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$20 \mathrm{CERDIP}{ }^{\text {P }}$	± 1
MAX506BM.JP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$20 \mathrm{CERDPP**}$	$\pm 11 / 2$

* Contact factory for dice specifications.
**Contact factory for availability and processing to MIL-STD-883
MлХ1М

Quad 8-Bit DACs with

Rail-to-Rail Voltage Outputs

Maxim cannot assume responsibility for uss of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. reserves the right to change the circuitry and
16 ___Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600
© 1994 Maxim Integrated Products Printed USA MAXIMA is a registered trademark of Maxim Integrated Products.

