Calibrated Quad 12－Bit Voltage－Output D／A Converters

General Description

TheMAX526／MAX527 contain four 12－bit，voltage－output dig tal－to－analog converters（DACS）．Precision output buffer amplifiers are included on－chip to provide voltage outputs he MAX527 operates with $\pm 5 \mathrm{~V}$ power supplies，while the MAX526 utilizes -5 V and +12 V to +15 V supplies．Offset，gain and linearity are factory calibrated to provide the MAX526＇s LLSB total unadjusted error（TUE）．
These devices feature double－buffered interface logic with a 2－bitinput register and a 12－bitDAC register Data inthe DAC 2－bitinputregister anda 2－biDAC register．Dakain MACAC egister sets the DAC output voltage．The MAX526／MAX527 have an 8 －bit－wide data bus．Data is loaded into the input register using two write operations with an 8－bit LSB write load （LDAC）input transfers data from the input register to the DAC register．All logic inputs are TTL and CMOS compatible．
The MAX526／MAX527 are available in 24 －pin， 300 mil plastic DIP，Ceramic SB，and wide SO packages．

Applications
Minimum Component Count Analog Systems
Digital Offset／Gain Adjustment
Arbitrary Function Generators
Industrial Process Controls
Automatic Test Equipment
Functional Diagram

－Reference input Range Includes Ground Features －Full 12－Bit Pertormance Without
－ 1 LSB Total Unadjusted Error（MAX526）
－Buffered Voltage Outputs
－Fast Output Settling
$3 \mu \mathrm{~s}$ for MAX526
$\mathbf{5}$ s for MAX527
－Double－Buffered Digital Inputs
－Microprocessor and TTL／CMOS Compatible
－$\pm 5 \mathrm{~V}$ Supply Operation（MAX527）
Ordering Information

PART	TEMP．RANGE	PIN－PACKAGE	$\begin{gathered} \text { INL } \\ \text { (LSBs) } \end{gathered}$
MAX526CCNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DP	$\pm 1 / 2$
MAX526DCNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP	± 1
MAX526CCWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide SO	$\pm 1 / 2$
MAX5260CWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide SO	± 1
MAX526DC／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice＊	± 1
MAX526CENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow Plastic DP	$\pm 1 / 2$
MAX526DENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow Plastic DIP	± 1
MAX526CEWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO	$\pm 1 / 2$
MAX526DEWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO	± 1
MAX526CMYG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Narow Ceramic SB＊＊	$\pm 1 / 2$
MAX526DMYG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Narow Ceramic SB＊＊	± 1

Ordering Information continued on last page
＊Contact factory for dice specifications．
＊＊Contact factory for availability and processing to MIL－STD－883
Pin Configuration

ハレノメールー

Calibrated Quad 12-Bit Voltage-Output D/A Converters

Calibrated Quad 12－Bit Voltage－Output D／A Converters

ELECTRICAL CHARACTERISTICS－MAX526（continued）

Note 1：TUE is specified with no resistive load．
Note 2：See Reference Input section
Note 3：Guaranteed by design．Not production tested．
Note 4：Digital inputs at 2.4 V ；with digital inputs at OV ， ID decreases typically by 1.5 mA at $+25^{\circ} \mathrm{C}$
TIMING CHARACTERISTICS－MAX526

Calibrated Quad 12－Bit Voltage－Output D／A Converters

Calibrated Quad 12－Bit Voltage－Output D／A Converters

ELECTRICAL CHARACTERISTICS（continued）－MAX527

Note 1：TUE is specified with no resistive load
Note 2：See Reference Input section
Note 3：Guaranteed by design．Not production tested
Note 4：Digital inputs at 2.4 V
TIMING CHARACTERISTICS－MAX527

ハーノメルノレ

Calibrated Quad 12-Bit Voltage-Output D/A Converters

Calibrated Quad 12-Bit Voltage-Output D/A Converters

Calibrated Quad 12－Bit Voltage－Output D／A Converters

Calibrated Quad 12－Bit Voltage－Output D／A Converters

Calibrated Quad 12－Bit Voltage－Output D／A Converters

Pin Description		
PIN	Name	FUnction
1	Voutc	DAC C Output Voltage
2	Voute	DAC B Oupur Votage
3	vouta	DAC A Output Voltage
4	$\mathrm{v}_{\text {SS }}$	Negative Power Supoly
5	AGND	Analog Ground
6	vrefab	Reference Voltage input for DAC A and DAC B
7	DGND	Digital Ground
8	［DAC	Load DAC Input（active low）．Oriving this asynchronous input low transfers the con－ tive DAC register．
9	D7	Data Bit？
10	06	Data Bit 6
11	D5	Data Bit 5
12	D4	Data Bit 4
13	011／03	Data Bit 11 （MSB）if CSMSB is low and CSLSB is high．Data Bt 3 （MSB）it
14	D10／02	Data Bit 10 （MSB）if CSMSE is low and CSLSS is nigh．Data Bit 2（MSB）it CSMSB is high and CSLSE is low．
15	D9／／D1	Data Bit 9 （MSB）if CSMSB is low and CSLSB is high．Data Bit 1 （MSB）if CSMSB is high and CSLSB is low．
16	D8／00	Data Bit 8 （MSB）if CSMSB is ow and CSLSE is high．Data BitO 0 （MSB if it CSMSB is high and CSLSB is low．
17	A1	DAC Address Select Bit（MSB）
18	A0	DAC Address Select Bit（LSB）
19	VREFCD	Reference Voltage Input for DAC C and DAC D
20	WR	Writit inout tactive low）．WR along with CSMSB and CSLSB load data ing the DAC input registier selected by A 1 and AO
21	$\overline{\text { CSLSB }}$	Chip Select for LS Byte（active low）． Selects the lower 8 bits of the addressed input register．
22	CSMSB	Chip Select for MS Nibble（active low） Selects the upper 4 bits of the addressed input register．
23	Vod	Positive Supply Voltage
24	Vouto	DAC D Output Vollage

The MAX526／MAX527 Contain Section
The MAX526／MAX527 contain four voltage output DACs The DACs are＂inverted＂R－2R ladder networks that con－ vert 12－bit digital inputs into equivalent analog output voltages in proportion to the applied reference voltages The MAX526／MAX527 have two reference inputs：one shared by DAC A and DAC B（VREFAB），and the other shared by DAC C and DAC D（VREFCD）．These inputs allow different full－scale output voltage ranges for each pair of DACS（Figure 1）

Reference Input

The MAX526／MAX527 can be used for multiplying ap－ plications．The reference accepts both $D C$ and $A C$ sig－ nals．The voltage at each VREF input sets the full－scale output voltages for its respective DACs．The input im－ pedance of the VREF inputs are code dependent，with the lowest value（typically $6 \mathrm{k} \Omega$ for VREFAB or VREFCD） occuring when the input code is 010101010101 ．The maximum value，typically $60 \mathrm{k} \Omega$ ，occurs when the input code is 000000000000 ．Since the input impedance at VREF is code dependent，load regulation of the reference used is important

Calibrated Quad 12－Bit Voltage－Output D／A Converters

The guaranteed minimum input impedance of each refer－ ence input of the MAX526／MAX527 is $5 \mathrm{k} \Omega$ ．When the ref erence inputs are driven from the same source，the minimum impedance that must be driven by the reference source is $25 \mathrm{k} \Omega$ ．A voltage reference such as the MAX674 would typically deviate by 0.165 LSB （ 0.33 LSB worst case） when simultaneously driving both MAX526 reference inputs at 10 V ．Improve accuracy by driving VREFAB and VREFCD separately or by using a reference with excellen accuracy and superior load regulation，such as the MAX676／MAX677／MAX678．
Using an op amp to buffer the reference is another way to obtain high accuracy．The closed－loop output im－ to obtain high accuracy．The closed－loop output im－ This ensures errors of less than 0．08LSB when driving both reference inputs simultaneously．The MAX400 or OP07 are suitable for this application．The input capacitance at VREF is also code dependent and typi－ cally varies from 125 pF to 300 pF
VOUTA－D are represented by a digitally programmable voltage source as

$$
\text { VOUT }=\left(N_{B} \times V R E F\right) / 4096
$$

where N_{B} is the numeric value of the DAC＇s binary input code（0 to 4095）

Output Buffer Amplifiers

All MAX526／MAX527 voltage outputs are internally buf－ fered by precision unity－gain followers with a typical slew fered by precision unity－gain followers with a typical slew With a full－scale transition at the MAX526 output（OV to +10 V or +10 V to 0 V ），the typical settling time to $\pm 1 / 2 \mathrm{LSB}$ is $3 \mu \mathrm{~s}$ when loaded with $5 \mathrm{k} \Omega$ in parallel with 100 pF （loads less than $5 k \Omega$ degrade performance）．Typical output dynamic response and settling performance of the MAX526 output amplifier are shown in the Typical Operat－ ing Characteristics section．

With a full－scale transition at the MAX527 output（OV to +2.5 V or +2.5 V to 0 V ），the typical settling time to $\pm 1 / 2 \mathrm{LSB}$ is $5 \mu \mathrm{~s}$ when loaded with $5 \mathrm{k} \Omega$ in parallel with 100 pF （loads less than $5 k \Omega$ degrade performance）．Typical outpu dynamic response and settling periormance of the MAX527 output amplifiers are shown in the Typical Operating Characteristics section

Digital Inputs and Interface Logic Digital inputs are compatible with both TTL and 5V CMOS logic．The MAX526／MAX527 interface with microproces sors using an 8 －bit－wide data bus．The double－buffered and a 12 －bit DAC register for each of the four DACs．

Each DACs analog output reflects the data held in it DAC register．Address lines $A O$ and $A 1$ select which DAC receives data trom the data bus，as shown in Table 1．All MAX526／MAX527 control inputs are level－triggered．Fig Table 1．DAC Addressing

$\overline{\mathrm{CSMSB}}, \overline{\mathrm{CSLSB}}$ ，and $\bar{W} R$ load from the data bus to the input register selected by AO and A1．Puling CSLSB and WR low loads the lower 8 bits of the input register，while $\overline{C S M S B}$ and $\bar{W} \bar{R}$ load the upper 4 bits．The order in which the data is loaded into the input register（i．e．upper 4 bits first or lower 8 bits first）is not important．It is possible to concurrently load the full 12 bits of the input register by pulling $\overline{C S L S B}, \overline{C S M S B}$ ，and $\overline{W R}$ low．Note that the same data will be written to the 4MSBs（D11－D8）and the 4LSB （D3－DO），respectively．If the DACs are configured in the unipolar output mode（see Figure 5 and Table 3），this method can be used to quickly zero the DAC outputs
Data is latched into the selected input register on the rising edge of WR．Alternatively，data will be latched into

Figure 2．Input Control Logi

Calibrated Quad 12－Bit Voltage－Output D／A Converters

Figure 3．Write－Cycle Timing

Calibrated Quad 12－Bit Voltage－Output D／A Converters

the lower 8 bits of the input register on the rising edge of $\overline{C S L S B}$ ，and the upper 4 bits will be latched on the rising edge of $\overline{C S M S B}$ ．
Data is transferred from all input registers to the DAC registers by puling $\overline{\text { LDAC low．This simultaneously up－}}$ dates all four DACs．Since LDAC is asynchronous with respect to WR ，be sure that incorrect data is not latched to the output．Table 2 shows the truth table for operation of W，LDAC， MAX526／MAX527write－cycle timing

Application Information

Ground Management

Digital or AC transient signals between AGND and DGND can create noise at the analog outputs．It is recom－ mended that AGND and DGND be tied together at the DAC and that this point be tied to the highest quality ground available．If separate ground buses are used，two clamp diodes（1N914 or equivalent）should be con－ nected in inverse parallel between AGND and DGND． This will ensure that the two ground pins always remain within one diode drop of each other
Careful PCB ground layoutminimizescrosstalk between DAC outputs，reeerence inputs，and digital inputs．Figure 4 shows a suggested circuit－board layout for minimizing crosstalk．

Unipolar Output
In unipolar operation，the output voltages and the refer ence inputs are the same polarity．Figure 5 shows the MAX526／MAX527 unipolar output circuit．The unipolar output codes are listed in Table 3.
Table 3．Unipolar Code Table

DAC CONTENTS		ANALOG OUTPUT
MSB	LSB	
1111	1111	1111
1000	0000	0001

LZSXVW／9ZSXVW

Bipolar Output

The MAX526／MAX527 outputs may be configured for bipolar output operation using Figure 6 ＇s circuit．One op amp and two resistors are required per channel．With $R 1=R 2$ ：

VOUT $=\operatorname{VREF}\left(\left(2 N_{B} / 4096\right)-1\right)$
where N_{B} is the numeric value of the DAC＇s binary input code．
Table 4 shows the digital code vs．output voltage for the circuit in Figure 6

Calibrated Quad 12－Bit Voltage－Output D／A Converters

Using an AC Reference

N In applications where VREF has AC signai components，
15 the MAX526／MAX527 have multiplying capability within the VREF input range specifications．Figure 7 shows a －technique for applying a sine wave signal to the reference －input where the AC signal is offset before being applied to VREF．Note that VREF must never be more negative than DGND．
1 Total harmonic distortion plus noise（THD＋N ）of the N MAX526 is typically less than 0.012% with input frequen－
1 ．cies up to 35 kHz for 5 V p－p swing；up to 50 kHz for 2 V
swing．The typical－3dB frequency is 700 kHz ，as shown －in the Typical Operating Characteristics graphs For the MAX527，THD $+N$ is typically less than 0.024% with input frequencies up to 100 kHz ，a signal amplitude of 50 mV ，and a load of $5 k \Omega$ in parallel with 100 pF ．With $\mathrm{k} \Omega$ load in parallel with 100pF，the MAX527＇s THD is below 0.024% for input frequencies up to 95 kHz

DAC CONTENTS			ANALOG OUTPUT
MSB		LSB	
1111	1111	1111	＋VREF $\left(\frac{2047}{2048}\right)$
1000	0000	0001	$+\operatorname{VREF}\left(\frac{1}{2048}\right)$
1000	0000	0000	OV
0111	1111	1111	－VREF（ $\frac{1}{2048}$ ）
0000	0000	0001	－VREF $\left(\frac{2047}{2048}\right)$
0000	0000	0000	$-\operatorname{VREF}\left(\frac{2048}{2048}\right)=-\operatorname{VREF}$

NOTE： $1 \mathrm{LSB}=(\mathrm{VREF})\left(\frac{1}{4096}\right)$

Figure 6．Bipolar Output Circuit

Offsetting AGND

AGND can be biased above DGND to provide an ar－ bitrary nonzero biased above DGND to provide an ar－ application is shown in Figure 8 ．The output voltage at VOUTA is：

$$
\text { VOUTA }=V_{B I A S}+N_{B} \times V_{I}
$$

where N_{B} is the numeric value of the DAC＇s binary inout code．Since AGND is common to all four DACs，all outputs will be offset by VBIAS in the same manner．Note that AGND should not be biased more negative than DGND

[^0]
Calibrated Quad 12－Bit Voltage－Output D／A Converters

Supply Voltage and Decoupling
For full MAX526 performance，VDD should be 4 V higher than VREF in the 10.8 V to 16.5 V range．When using the MAX527．VDD should be at least 2.2 V higher than VREF in the 4.75 V to 5.5 V range．Both VDD and VSS supplies should be bypassed with a $4.7 \mu \mathrm{~F}$ capacitor in parallel with a $0.1 \mu \mathrm{~F}$ capacitor to AGND，with short lead lengths as close to the supply pins as possine．

Figure 8．AGND Bias Circuit

Power－Supply Sequencing On power－up，VSS should come up first，VDD next，fol－ lowed by VREFAB or VREFCD．If supply sequencing is not possible，tie an external Schottky diode between VSS and AGND as shown in Figure 9

Calibrated Quad 12-Bit Voltage-Output D/A Converters

PART	TEMP. RANGE	PIN-PACKAGE	$\begin{gathered} \mathrm{INL} \\ \text { (LSBs) } \end{gathered}$
MAX527CCNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narow Plastic DIP	$\pm 1 / 2$
MAX527DCNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP	± 1
MAX527CCWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide SO	$\pm 1 / 2$
MAX527DCWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide SO	± 1
MAX527DC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*	± 1
MAX527CENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow Plastic DIP	$\pm 1 / 2$
MAX527DENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow Plastic DIP	± 1
MAX527CEWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO	$\pm 1 / 2$
MAX527DEWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO	± 1
MAX527CMYG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Narow Ceramic S8**	$\pm 1 / 2$
MAX527DMYG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Narrow Ceramic SB**	± 1

___ Chip Topography

MAX526/MAX52

SUBSTRATE CONNECTS TO VDD:
TRANSISTOR COUNT: 2720 .

[^1]
[^0]: Figure 7．AC Reterence Input Circult

[^1]: Maxim cannol assume responsibiny lor use of any crcoiny ohe than cincuiny enirely embocied a Maxim product. No crrun palent heenses ate implied. Maxim reserves the right to change the circuitry and specifications without notice at any time
 16
 (C) 1995 Maxim Integrated Products

 Printed USA

