
The MAX620／MAX621 incorporate four MOSFET drivers and a charge－pump high－side power supply to power high－side switching and control circuits．The charge pump delivers a regulated output voltage 1 greate than VCC to the drivers，which then translate a swings from ground to the high－side voltage．The tha swings from ground to the nigh－side voltage．The out pustching applications including a wide range of line and bettery－powered applications．wide range and battery－powered applications．

The MAX620／MAX621 are microprocessor compatible and feature undervoitage lockout capability．This lockout feature inhibits the FET driver outputs until the high－side voltage reaches the proper level，as indicated by a Power－Ready output

The MAX620 requires three inexpensive charge－pump capacitors．The MAX621 has internal capacitors－no external components are needed．

Applications

Portable Computer Battery Load Management High－Side Power，N－Channel MOSFET Switching Low－Side Switching from Low Supply Voltages
Quad－Latching Level Translators
H－Briage Motor Drivers
Stepper Motor Drivers
Pin Configurations

Wide Operating Voltage Range
－Minimum Component Count
－Output Voitage Regulated to Vcc Plus 11V（Typ）
Low Quiescent Current－70 H （Typ）
－Undervoltage Lockout
－Power－Ready Output
－Internal Quad Latch

PART	TEMP．RANGE	PIN－PACKAGE
MAX620CPN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Plastic DIP
MAX620CWN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Wide SO
MAX620C／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice＊
MAX620EPN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Plastic DIP
MAX620EWN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Wide SO
MAX621 CPN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Plastic DIP
MAX62 IEPN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Plastic DIP

Typical Operating Circuit

ルノハメルバ \qquad Maxim Integrated Products 1
ルハハメIル！is a registered trademark of Maxim integrated Products．

Quad，High－Side MOSFET Drivers

Quad，High－Side MOSFET Drivers

ELECTRICAL CHARACTERISTICS（continued）

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
HIGH－SIDE DRIVERS						
Input Threshold Low	$V_{\text {TL }}$				0.8	V
Input Threshold High	$\mathrm{V}_{\text {TH }}$		2.4			v
Input Bias Current	l ${ }_{\text {B }}$	$0 \mathrm{~V}<\mathrm{V}_{\text {IN }}<5 \mathrm{~V}$	－100		100	nA
Chip Enable Threshold Low	CElo				0.8	V
Chip Enable Threshold HIgh	СЕ ${ }_{\text {HI }}$		2.4			V
Minimum CE Pulse Duration	TCE		100	50	－－－	ns
Pull－Down Current	ICE			10		$\mu \mathrm{A}$
Data－Hold Time	TDH			－10	10	ns
Data Set－Up Time	TSU			50	100	ns
Data－Delay Time	Tod	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{CLL}^{2}=12 \mathrm{pF}$		150		ns
Driver Output Rise Time	TR	$C_{L}=1000 \mathrm{pF}$		1.7		$\mu \mathrm{s}$
Driver Output Fall Time	TF	$\mathrm{Cl}_{\mathrm{L}}=1000 \mathrm{pF}$		2.5		$\mu \mathrm{s}$

Note 1：High－Side Voltage（ $V+$ ）is available only on the MAX620 and is measured with respect to GND．$V+$ on the MAX621 is Note 2：For $\mathrm{FCC}>+13 \mathrm{~V}$ ，on the MAX 620 only．use $\mathrm{C} 1=\mathrm{C} 2=0.01 \mu \mathrm{~F} C 3=1 \mu \mathrm{~F}$ ．
Note 2：For $V C C>+13 V$ ．on the $\mathrm{MAX620}$ only，use $\mathrm{C1}=\mathrm{C2}=0.01 \mu \mathrm{~F}$ ． $\mathrm{C3}=1 \mu \mathrm{~F}$ ．
Note 3：Power－Ready Threshold is the voltage with respect to GND at $\mathrm{V}+$ when PR switches high（ $\mathrm{PROH}=\mathrm{VCC}$ ）．
Note 5：The MAX620 is tested for quiescent current at +16.5 V using $\mathrm{C} 1=\mathrm{C} 2=0.047 \mathrm{\mu F}$ to minimize test time．In normal operation above $+13 V, C 1$ and C 2 must not exceed $0.01 \mu \mathrm{~F}$ ．

Typical Operating Characteristics

Quad, High-Side MOSFET Drivers

Quad，High－Side MOSFET Drivers

NOIE．THE MAXIMUM SWITCHING RATE
OCCLIS JUST BELOW THE POINT

Quad，High－Side MOSFET Drivers

PIN		NAME	FUNCTION
MAX620	MAX621		
1	1	OUT4	Driver Output 4
2	2	OUT3	Driver Output 3
3	3	IN3	TTL／CMOS Compatible Input to Driver 3．Connect to GND if unused．
4	4	IN4	TTL／CMOS Compatible Input to Driver 4．Connect to GND if unused．
5	5	CE	Chip Enable．Logic high inhibits input data．Logic low transfers input data to the quad latch and driver outputs．$\overline{\mathrm{CE}}$ pulse must be at least 100 ns．Connect to GND for direct data transfer to driver outputs．
6	6	PR	Power－Ready Output is a logic high equal to VCc when $\mathrm{V}+\geq$（ $V_{C C}$ plus 8.5 V ）
7	7	GND	Ground
8		V＋	High－side voltage out．Equal to approximately V_{CC} plus 11 V ．
	8	C2＋	Internally connected to secondary charge－pump capacitor．Make no connection to this pin．
9		C2＋	Positive terminal to secondary charge－pump capacitor．Connect to $0.047 \mathrm{\mu F}$ capacitor． For $V_{C C}>13 \mathrm{~V}$ ，connect to $0.01 \mu \mathrm{~F}$ ． \qquad
	9	C1－	Internally connected to primary charge－pump capacitor．Make no connection to this pin．
10		C1－	Negative terminal to primary charge－pump capacitor．Connect to $0.047 \mathrm{\mu F}$ capacitor For $\mathrm{VCC}>13 \mathrm{~V}$ ，connect to $0.01 \mu \mathrm{~F}$ ．
	10－12	$\mathrm{C} 1+$	Internally connected to primary charge－pump capacitor．Make no connection to these pins．
11		C1＋	Positive terminal to primary charge－pump capacitor．Connect to $0.047 \mu \mathrm{~F}$ capacitor For $V_{C C}>13 V$ ．connect to 0.01μ F．
12	13	Vcc	Supply Voltage．Connect to positive supply．
13		C2－	Negative terminal to secondary charge－pump capacitor．Connect to $0.047 \mu \mathrm{~F}$ capacitor For $\mathrm{V}_{C C}>13 \mathrm{~V}$ ，connect to $0.01 \mu \mathrm{~F}$ ． \qquad
14	14	I． C ．	Internal Connection．Make no connection to this pin．
15	15	IN1	TTL／CMOS Compatible Input to Driver 1．Connect to GND if unused．
16	16	IN2	TTL／CMOS Compatible Input to Driver 2．Connect to GND if unused．
17	17	OUT2	Driver Output 2
18	18	OUT1	Driver Output 1

Quad，High－Side MOSFET Drivers

Detailed Description

Figure 1 shows the MAX620／MAX62 1 functional diagram． A regulated multi－stage charge pump supplies four MOS FET drivers with VCC plus 11 V for driving external MOS－ FETS（Figure 2）．The logic inputs to the four drivers are stored in a quad latch．Data is latched by pulling CE high． An undervoltage lockout feature prevents the driver out－ puts from going high until $V+$ reaches the power－ready threshold（PRT）voltage（VCC plus 8.5 V ）and VCC is greater than $+3 V$

The Dual Charge Pump
The high－side voltage of approximately 11 V above VCC is generated by a multi－stage charge pump（Figure 2） is generated by a multi－stage charge pump（Figure 2）．
Although the charge pump is capable of multiplying VCC Although up to four times，the output is regulated to VCC plus by up to four times，the output is regulated to VCC plus
11 V by an internal feedback circuit．The charge pump typically operates at 70 kHz ，but regulates by pulse－skip－ ping．When $V+$ exceeds $V c c$ plus $11 V$ ，the charge pump shuts off．As V＋falls below Vcc plus 11V，the charge pump turns on

The MOSFET Drivers
The four MOSFET drivers level shift TTL／CMOS input signals to output levels that switch between ground and VCC plus 11 V ．These outputs can drive N－channel power MOSFETs in either high－side or low－side switching ap－

Figure 2．MAX620MAX621 Charge Pump Block Diagram
ルーコメリノレ \qquad

Quad，High－Side MOSFET Drivers

MAX620／MAX621
plications（a bridge arrangement would contain two high side and two low－side N－channel MOSFET switches see Figure 4）．

Data Input Latch

The driver outputs are separated from the data inputs by The driver a quad latch．When ce is puled low，the latch becomes When CE goes high，the latch enters hold mode and new input data is not transferred to the driver outputs．
Input data must be valid typically 100 ns before the rising edge of $\overline{C E}$ ，and held for 10 ns （max over temp）．The minimum CE pulse wiath is toons（Figure 3）．Hatched operation is not required，connect $\overline{\mathrm{CE}}$ to GND

Figure 3．Digital Interface Timing Diagram
Undervoltage Latch Inhibit
If Vcc falls below +3 V due to a power failure or while powering down，or $\mathrm{V}+$ falls below VCC plus 8.5 V ，the quad latch immediately resets，forcing the driver outputs low． The quad latch remains reset until Vcc rises above +3 V with the high－side voltage present．This prevents the latch from being corrupted with erroneous data in a momentary power failure by ensuring that it will be reset．

Undervoltage Detector
The MAX620／MAX621 each contain an undervoltage detector，which forces all driver outputs low when the high－side voltage $(\mathrm{V}+)$ is less than the PRT or when VCC MOSFET power transistors have sufficient gate drive to operate without dissipating excessive power．On power－ up the quad latch remains reset until the charge pump boosts the high－side voltage to the PRT．As soon as V_{+} reaches the PRT the undervoltage lockout disables the quad latch is enabled，and Power Ready（PR）goes high

The undervoltage lockout feature also forces the driver outputs low if $\mathrm{V}+$ is pulled below PRT，e．g．，if the driver output（s）or $V+$ are overloaded．

Power－Ready Output
The MAX620／MAX621＇s PR output is a direct extension The MAXG2oMax62＇s PR output is a direct extension of the undervoltage lockout feature．When power is and VCC exceeds $+3 V$ ．The PR output high level is VCC．

Capacitor Selection for the MAX620 Capacitor type is not critical for the MAX620．However If operation with VCC exceeding +13 V is expected， C 1 and C2 must be no greater than $0.01 \mu \mathrm{~F}$ ．Larger value capacitors，with Vcc above +13 V ，assipate excessive energy in the internal switches during charge－pump cycles

Sourcing Current From V＋

（MAX620 OnIy）
A small amount of current may be sourced from $V+($ pin 8$)$ to drive other circuitry．The amount of current is a function of VCC，the gate capacitance of all MOSFETs being driven， and the driver switching rate（＂MAX620 Maximum Switching Rate vs．Additional V＋Load Current，＂Typica Operating Characteristics）．
The MAX620 $\mathrm{V}+$ output is not internally short－circuit protected．In applications where $\mathrm{V}+$ is susceptible to short circuiting，external output short－circuit protection must be provided．Accomplish this by connecting a resistor between $V+$ and the load to limit the $V+$ current to less than 25 mA ．The resistor value is determined by the following formula：

$$
R C L \geq \frac{V_{C C}}{25 \mathrm{~mA}}
$$

Application Information Data Input Transition Time
The MAX620／MAX621 are microprocessor compatible and easy to interface．However，the driver input voltage must not remain between $V_{I L}$ and $V_{I H}$ for more than 500 ns ．In clocked data－bus systems，this is most easily accomplished by setting data on the driver input lines before clocking CE low．However，most CMOS and TH gates meet the 500ns transition speed requirement

Maximum Driver Switching Rate
The maximum driver switching rate occurs when loading causes $V+$ to fall to the PRT（VCC plus 8.5 V ）and the driver causes $V+$ to tal to the is a function of the total gate capacitance of all MOSFETs being driven and the maxi－ mum available charge－pump output current at a given

Quad，High－Side MOSFET Drivers

supply voltage．For example，for $\mathrm{VCC}_{C C}=+5 \mathrm{~V}$ with no external load on $\mathrm{V}+$ ，the maximum switching rate while driving four 1500 pF loads is 15 kHz for the MAX620（C $=\mathrm{C} 2=0.047 \mu \mathrm{~F}$ ）and 14 kHz for the MAX621（＂Maxi－ mum Switching Rate vs．VCC，＂Typical Operating
Characteristics）．

Typical Application Circuits

H－Bridge Motor Driver

Figure 4 shows a MAX620 driving an H －bridge switch that controis the direction of a +5 V DC motor．By toggling between the FORWARD and REVERSE inputs as shown each MOSFET driver－output pair turns on its associated MOSFET pair，which passes current through the motor， causing rotation in the desired direction．In order to prevent all four MOSFETs from switching on at once，the FORWARD／REVERSE inputs should be updated before clocking $\overline{\mathrm{CE}}$ low．Of course，FORWARD and REVERSE must not be asserted simultaneously．Do not use a supply voltage that will cause the gate drive to exceed the absolute maximum gate－to－source voltage of the ow－side switch．

Stepper Motor Driver
A MAX620，clock source，pulse control network，and translator logic form a complete stepper motor driver
（Figure 5）．TTL／CMOS signals from the logic network are translated to high－side levels that drive four N －channel power MOSFETs，supplying current to each of four step－ per motor phases．Diodes provide a discharge current path for the stepper motor windings．

Logic－Controlled，＋5V Regulated Power
Distribution
A MAX620，LM10 reference and op－amp combination， A MAX620，LM 0 referne MOSFET Comprise an ultra－low， andan RFZ40N－channel high－side switches（Figure 6）
When the power switch， Sp_{P} ，is closed， V_{+}quickly pumps up to VCC plus 11 V ．PR remains low and holds the output of the +5 V regulator near zero until $V+$ has reached the PRT．（VCC plus $8.5 \mathrm{~V}--4 \mathrm{~ms}$ typ）．At the same 20 forces the driver ouge lock leat the PRT is reached Capaitor C4 suppresses load－swithis transients．Its size dends the largest load being switched With C4 1000 F the peak transient for a 1 A switched load is less than 150 mV

The circuit provides a single continuous +5 V output and four switched +5 V supply lines．The regulator is capable of supplying several amps with a typical dropout voltage of 28 mV at $1 \mathrm{~A}(\mathrm{Q} 1=\mathrm{IRF} 240)$

Figure 4．H－Bridge DC Motor Controller
ハリノメリノレ 9

Quad, High-Side MOSFET Drivers

10 \qquad

Quad，High－Side MOSFET Drivers

Quad, High-Side MOSFET Drivers

NOTE: Connect substrate to V -
MAX620 transistor count: to V

Package Information

18 Lead Plastic DIP $\theta_{J A}=130^{\circ} \mathrm{C} / \mathrm{W}$ $\theta_{J C}=60^{\circ} \mathrm{C} / \mathrm{W}$

18 Lead Small Outline, Wide
$\theta_{J A}=105^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{J C}=60^{\circ} \mathrm{C} / \mathrm{W}$

