Quad, High-Side Power Switch

Applications
Portable Computer Battery-Load Management High-Side Power, N-Channel MOSFET Switching Low-Side Switching from Low Supply Voltages
Solid-State Relay
Quad-Latching Level Translators
H-Bridge Motor Drivers
Stepper Motor Drivers
Pin Configuration

0.2Ω Max Switch Resistance

- +4.5 V to +16.5 V Operating Supply Voltage Range
- Output Voltage Regulated to VCC + 11V (Typ) Available at ${ }^{+}+$
- 70 $\mu \mathrm{A}$ Quiescent Current (Typ)
- Quad Latched TTL/CMOS Inputs
- Power-Ready Output
- Undervoltage Lockout

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX625CNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX625ENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow Plastic DIP

MAXIM Maxim Integrated Products
Call toll free 1-800-998-8800 for free samples or literature.

Quad, High-Side Power Switch

15 ABSOLUTE MAXIMUM RATINGS
 8

 Power Ready (PR) Output ... (GND -0.3V) to (VCC $+0.3 \mathrm{~V})$ $\mathrm{V}+$ Output Current 25 mA
 Drain-to-Source Breakdown Voltage
 Continuous Drain to Source Current
 Continuous Drain to Source Current Single MOSFET All four MOSFETs .

Continuous Total Power Dissipation
to $+70^{\circ} \mathrm{C}$. Cl°. 13.1067 mW
...... $13.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Ranges: . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX625ENG
Storage Temperature Range
Lead Temperature (soldering 10 sec) $\cdots . .-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device These are stress ratings only, and functiona peration of the device at these or any other conditions beyona those indicated in the operational sections of the specifications is not implied. Exposure to

ELECTRICAL CHARACTERISTICS

($V_{C C}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage (Note 1)	V_{CC}			4.5		16.5	V
Internal MOSFET ON Resistance (Note 2)	RDS(ON)	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 16.5 \mathrm{~V} \text { (High-side) } \end{aligned}$			150	200	$\mathrm{m} \Omega$
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{VCC}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 8 \mathrm{~V} \text { (Low-side) } \end{aligned}$			140	200	
		$T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$ $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 16.5 V (High-side)				260	
		$T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$ $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 8 V (Low-side)				260	
Off Leakage Current	IDS(OFF)	$\mathrm{V}_{\mathrm{DS}}=55 \mathrm{~V}$			0.05	1.0	$\mu \mathrm{A}$
High-Side Voltage (Note 3)	V+	IOUT $=0, V_{\text {CC }}=+4.5 \mathrm{~V}$		14.5	15.5	17.5	v
		IOUT $=0, V_{C C}=16.5 \mathrm{~V}$		26.5	27.5	29.5	
		lout $=250 \mu \mathrm{~A}, \mathrm{~V}_{C C}=5 \mathrm{~V}$		15	16	18	
		lout $=500 \mu \mathrm{~A}, \mathrm{~V}_{\text {CC }}=16.5 \mathrm{~V}$		26.5	27.5	29.5	
Power-Ready Threshold	PRT	IOUT $=100 \mu$ A Sink (Note 4)		12	13.5	14.5	V
Power-Ready Output High	PRoh	ISOURCE $=100 \mu \mathrm{~A}$		3.8	4.7	5	v
Power-Ready Output Low	PRoL	$\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}$			0.1	0.4	V
Switching Frequency	fo	IOUT $=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			70		kHz
Quiescent Supply Current	IQ	$T_{\text {A }}=+25^{\circ} \mathrm{C}$, IOUT $=0$	$V_{C C}=16.5 \mathrm{~V}$		50	350	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		70	500	

\qquad

Quad, High-Side Power Switch

ELECTRICAL CHARACTERISTICS (continued)
($\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logic Inputs						
Input Threshold Low	$V_{T L}$				0.8	V
Input Threshold High	$\mathrm{V}_{\text {TH }}$		2.4			V
Input Bias Current	IB	$\mathrm{V}<\mathrm{V}_{\text {IN }}<5 \mathrm{~V}$	-100		+100	nA
Chip Enable Threshold Low	CELO				0.8	V
Chip Enable Threshold High	CEHI		2.4			V
Minimum $\overline{\text { CE }}$ Pulse Duration	tce		100	50		ns
Pull-Down Current	ICE			10		$\mu \mathrm{A}$
Data Hold Time	tD			-10	+10	ns
Data Set-Up Time	tsu			50	100	ns
Data Delay Time	tod	$V_{C E}=0 \mathrm{~V}$		150		ns

Note 1: To avoid exceeding the maximum $\mathrm{V}_{G S}$ rating of the internal N -channel MOSFET switches, $\mathrm{V}_{C C}$ must not exceed +8 V in low-side switching applications.
Note 2: A "low-side" switch connects between the load and ground.
Note 3. The High-Side voltage $(V+)$ is measured with respect to
Note 4: Power Ready Threshold is the voltage measured with respect to ground at $\mathrm{V}+$ when PR switches high (PR HIGH $=\mathrm{V} C C$).

Quad, High-Side Power Switch

note: the maximum switching rate occurs just below the point where driver output and $v+$ LOAding pulls $v+$ to prt (PRT $-V_{C C}+8.5 \mathrm{~V}$).

4

PIN	NAME	FUNCTION
1	S4	MOSFET Source 4.
2	D4	MOSFET Drain 4.
3	S3	MOSFET Source 3.
4	D3	MOSFET Drain 3.
5	IC	Internal Connection. Make no connection to this pin.
6	IN3	TTL/CMOS Compatible Input to Switch 3. Connect to GND if unused.
7	IN4	TTL/CMOS Compatible Input to Switch 4. Connect to GND if unused.
8	CE	Chip Enable. Logic high inhibits input data. Logic low transfers data to switches. pulse must be at least 100ns. Connect to GND for direct data transfer.
10	GR	Power-Ready Output is a logic high equal to VCC when V $+\geq$ VCC + 8.5V.
11	IC	Ground.
12	IC	Internal Connection. Make no connection to this pin.
Internal Connection. Make no connection to this pin.		

PIN	NAME	FUNCTION
13	IC	Internal Connection. Make no connection to this pin.
14	IC	Internal Connection. Make no connection to this pin.
15	VCC	Supply Voltage. Connect to positive supply.
16	V+	High-side voltage out. Typically equal to VCC + 11V.
17	IC	Internal Connection. Make no connection to this pin.
18	IN1	TTL/CMOS Compatible input to switch 1. Connect to GND if unused.
19	IN2	TTL/CMOS Compatible input to switch 2. Connect to GND if unused.
20	IC	Internal Connection. Make no connection to this pin.
21	D2	MOSFET Drain 2.
22	S2	MOSFET Source 2.
23	D1	MOSFET Drain 1.
24	S1	MOSFET Source 1.

Detailed Description regulated multistage charge pump supplies four MOSFET regulated multistage charge pump supplies four MOSFET
drivers with $V_{C C}+11 \mathrm{~V}$ for driving the internal MOSFETs drivers with $V_{C C}+11 \mathrm{~V}$ for driving the internal MOSFETs
(Figure 2). Logic inputs to the four drivers are stored in a (Figure 2). Logic inputs to the four drivers are stored in a
quad latch. Data is latched by pulling $\overline{\mathrm{CE}}$ high. An quad latch. Data is latched by pulling CE high. An
undervoltage lockout prevents the internal MOSFETs undervoltage lockout prevents the internal mosfers Threshold (PRT) voltage ($\mathrm{V}_{\mathrm{CC}}+8.5 \mathrm{~V}$) and V_{CC} is greater than +3 V .

The Dual-Charge Pump
A high-side voltage of approximately VCC + 11V is generated by a multistage charge pump (Figure 2) Although the charge pump is capable of multiplying $V_{C C}$ by up to four times, the output is regulated to VCC 11 V by an internal feedback circuit. The charge pump typically operates at 70 kHz , but regulates by pulse skipping. When $V+$ exceeds $V C C+11 V$, the charge pump shuts off. As $\mathrm{V}+$ falls below $\mathrm{V}_{\mathrm{CC}}+11 \mathrm{~V}$, the charge pump turns on.

Figure 1. MAX625 Functional Diagram

Quad, High-Side Power Switch

Figure 2. MAX625 Charge-Pump Diagram

MOSFET Drivers
Four MOSFET drivers level shift TTL/CMOS input signals, without an inversion, to levels that switch between ground and $V_{C C}+11 \mathrm{~V}$. These outputs drive the internal N-channel power MOSFETs in either high-side or low-side switching applications (a bridge arrangement channel MOSFET switches)

Internal MOSFETs

Each internal MOSFET will handle 4A current peaks When all four MOSFETs are on the steady-state IDS(ON) is limited to 1 A due to power dissipation limitations.
A body diode connects from source-to-drain on each MOSFET, making them suitable for driving inductive loads. However, the body diode prohibits applications where two different voltages are being switched to the same load. Forexample, Mo ources connect to the same load when the +12 V MOSFET turns on the body diode in the +5 V MOSFET forward biases, shorting the two supplies together.

Data Input Latch

Driver outputs are buffered from data inputs by a quad latch. When $\overline{C E}$ is pulled low, the latch is transparent, and data transfers directly to driver outputs. When $\overline{C E}$ goes high, the latch enters hold mode, and new input data is ignored. Input data must be valid 100 ns before the rising edge CE and held is (max over temp). lat mis Co to GND.

Figure 3. Digital Interface Timing Diagram

Quad, High-Side Power Switch

Undervoltage Latch Inhibit
If VCC falls below $+3 V$ due to power failure, or while powering down, or $\mathrm{V}+$ falls below $\mathrm{VCC}+8.5 \mathrm{~V}$, the quad latch immediately resets, forcing the driver outputs low. The quad latch remains reset until $V C C$ rises above $+3 V$ and $\mathrm{V}+$ exceeds $\mathrm{VCC}+8.5 \mathrm{~V}$. This prevents the latch from being corrupted with errorneous data during a momentary power failure.

Undervoltage Detector
The MAX625 contains an undervoltage detector which forces all driver outputs low when the high-side voltage $(\mathrm{V}+$) is less than the Power Ready Threshold (PRT $=\mathrm{VCC}$ +8.5 V) or when VCC is less than +3 V . This ensures that trive to operate without dissipating excess power On power up the quad latch remains reset until the charge pump boosts the high-side voltage to the PRT As soon as $\mathrm{V}+$ reaches the PRT , the undervoltage lockout disables, the quad latch is enabled, and Power Ready (PR) goes the quad latch is enabled, and Power Ready (PR) goes high. The undervoltage lockout feature also orces the driver output(s) or $V+$ are overloaded.

Power Ready Output
The MAX625's PR output is a direct extension of the undervoltage lockout feature. When power is applied, PR remains a logic low until $V+$ reaches the PRT and $V_{C C}$ exceeds $+3 V$. The PR output high level is VCC.

Sourcing Current from \mathbf{V}_{+}

A small amount of current may be sourced from $\mathrm{V}+$ (pin 16) to drive other circuitry. The amount of current is a function of VCC , and the driver switching rate. (See Current", Typical Operating Characteristics).

The MAX625 V+ output is not internally short-circuit protected. In applications where $\mathrm{V}+$ is susceptible to short circuit, external output short-circuit protection must be provided. To accomplish this, connect a resistor between $V+$ and the load to limit the $V+$ current to less than 25 mA . The resistor value is determined by the following formula:

$$
R C L \geq \frac{V C C}{25 \mathrm{~mA}}
$$

Application Information

 Data Input Transition TimeThe MAX625 is microprocessor-compatible and easy to interface. However, the driver input voltage must no remain between $V_{I L}$ and $V_{I H}$ for more than 500 ns . In clocked databus systems, this is most easily accomplished by setting the data on the driver input lines before clocking CE low. However, most CMOS and TTL Connect unused inputs to ground.

Maximum Driver Switching Rate
The maximum driver switching rate is the rate at which loading causes $\mathrm{V}+$ to fall to the PRT (VCC +8.5 V) and the MOSFETs turn off. It is a function of the maximum charge-pump output current available to the drivers at a given supply voltage. For example, with $V_{C C}=+5 \mathrm{~V}$ and no external load on $\mathrm{V}+$, the maximum switching rate while driving all four inputs is 52 kHz . (See "Maximum Switching Rate vs. VCC", Typical Operating Characteristics).

Typical Application Circuits
For typical application circuits, see the MAX620/621 datasheet.

