Inverting Current-Mode PWM Regulators

General Description

The MAX736/MAX737/MAX739/MAX759 are CMOS, in verting, switch-mode regulators with an internal powe MOSFET. Guaranteed output power for the MAX739 is 1.25 W when powered from $\mathrm{a}+4.5 \mathrm{~V}$ input, and 1.5 W when powered from +6 V . Quiescent supply current for the MAX739 is typically 1.7 mA , and a shutdown mode reduce his to $1 \mu \mathrm{~A}$. These power-conserving features, along with igh efficiency and an application circuit that lends itself to miniaturization, make these parts excel in a broad range of on-card and portable equipment applications.

The MAX736MAX737/MAX739 have fixed outputs of -12V 15 V , and -5 V respectively. The MAX759 is adjustable from 0 V o $0-15 \mathrm{~V}$. Output voitages beyond -15 V require a transformer. These inverting DC-DC converters employ a high-perfor mance, current-mode, pulse-width modulation (PWM) con mance, current-mode, pulse-widthmodulation (Pula) conlow noise. The fixed-frequency oscillator is factory-trimmed to 165 kHz , allowing easy noise filtering. The devices are production tested in an actual application circuit, and output accuracy is guaranteed at $\pm 5 \%$ over all specified conditions of line, load, and temperature.
The input voltage range is +4 V to +15 V . For similar devices with smaller packages and an input voltage range of +4 V th smaller packages and an input vollage rang

Applications
Low-Noise Analog Signal Processing Circuits LCD Bias Supplies
Power Supplies for EC
Board-Level DC-DC Conversion
Battery-Powered Equipment
Computer Peripherals
Typical Operating Circuit

- Pre-Set -5V, -12V, -15V or Adjustable Outputs
- Convert Positive Voltages to Negative
1.25W Guaranteed Output Power
-83\% Typical Efficiency
1.7mA Quiescent Current (MAX739)
- $1 \mu \mathrm{~A}$ Shutdown Mode (MAX739)
- +4V to +15V Input Voltage Range
- 165kHz Current-Mode PWM - Low Noise and Jitter
- Undervoltage Lockout and Soft-Start Protection

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX736CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX736CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX736C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX736EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MAX736EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX736MJD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 CERDIP**
MAX737CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX737CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX737C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX737EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MAX737EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX737MJD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 CERDIP**

Ordering Information continued on last page of data sheet.
Contact factory for dice specifications.
**Contact factory for availability and processing to MIL-STD-883.
Pin Configurations

MAXIM
Call toll free 1-800-998-8800 for free samples or Iiterature

-5V, -12V, -15V, and Adjustable Inverting Current-Mode PWM Regulators

-5V, -12V, -15V, and Adjustable Inverting Current-Mode PWM Regulators

ELECTRICAL CHARACTERISTICS (continued)
Bootstrapped Mode (Circuit of Figure 1, $\mathrm{V}_{+}=5 \mathrm{~V}$, LLOAD $=0 \mathrm{~mA}$, DRV- $=\operatorname{VOUT}(-5 \mathrm{~V})$ (MAX739/MAX759), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to TMAX, unless

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Standby Current	VSHDN $=0 \mathrm{~V}$ (Note 4)			1.0	100.0	$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ Logic High Voltage					V+-0.5	V
$\overline{\text { SHDN }}$ Logic Low Voltage			0.25			V
SHDN Input Current				0.1	1.0	$\mu \mathrm{A}$
LX Leakage Current				10		$\mu \mathrm{A}$
Undervoltage Lockout	Measured at $\mathrm{V}+$			3.7	4.0	V
Reference Voltage	(Note 3)		1.16	1.23	1.30	V
Reference Drift				50		ppm/'C
Compensation-Pin Impedance				6		$\mathrm{k} \Omega$
		MAX736/MAX739	145	185	220	
Oscillatorfrequency		MAX737/MAX759	145	185	220	kHz

ELECTRICAL CHARACTERISTICS

Non-Bootstrapped Mode (Circuit of Figure 1, TA $_{A}=$ TMIN $^{\text {to }}$ TMAX, unless otherwise noted.)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage Range		MAX736	4.0		8.6	V
		MAX737	4.0		5.5	
		MAX739/MAX759	4.0		15.0	
Output Voltage, No Load (Note 2)	$\mathrm{V}+=4 \mathrm{~V}$ to 8.6 V	MAX736	-11.40		-12.60	v
	$\mathrm{V}+=4 \mathrm{~V}$ to 5.5 V	MAX737	-14.25		-15.75	
	$\mathrm{V}+=4 \mathrm{~V}$ to 15 V	MAX739	-4.750		-5.250	
		MAX759 (Note 2)	-4.775		-5.225	
Output Current (Note 5)	$\mathrm{V}+=5 \mathrm{~V}$	MAX736		70		mA
		MAX737		50		
		MAX739/MAX759		250		
Supply Current, No Load	$V_{+}=5 \mathrm{~V}$	MAX736/MAX739		1.6	3.0	mA
		MAX737		2.5	4.5	
		MAX759		2.1	4.0	

Note 2: MAX759 output voltage tests are performed using an external resistor divider to set the output voltage to - 5 V (see
Note 3: Output voltage tolerance is $\pm 4.5 \%$ plus external feedback resistor tolerances for the MAX759.
Note 4: The standby supply-current specification is set at $100 \mu \mathrm{~A}$ due to test method limitations rather than actual device performance
Note 5: $10 \mu \mathrm{H}$ inductor used with the MAX736/MAX737. $18 \mu \mathrm{H}$ inductor used with the MAX739/MAX759.
-5V, -12V, -15V, and Adjustable Inverting Current-Mode PWM Regulators

-5V, -12V, -15V, and Adjustable Inverting Current-Mode PWM Regulators

MA×1

-5V, -12V, -15V, and Adjustable

 Inverting Current-Mode PWM Regulators Inverting Current-Mode PWM Regulators

Figure 10. MAX739/MAX759 Standard Application Circuit
(Through-Hole Components)

MAXIM

$-5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V}$, and Adjustable Inverting Current-Mode PWM Regulators

Bootstrapped/Non-Bootstrapped Modes

he most important decision in configuring a MAX736/MAX737/MAX739/MAX759 circuit is whether to perate in bootstrapped (DRV- connected to a negative voltage) or non-bootstrapped (DRV- connected to GND) mode. The DRV-connection determines the input voltage range, available output power, and quiescent supply current as described in the Typical Operating Characeristics and Electrical Characteristics. DRV- connects to he negative supply rail of the driver stage that drives the internal power MOSFET gate. increasing the negative voltage applied to DRV- reduces MOSFET on resistance, but the supply current is higher due to the higher gatesource voltage swing. Do not exceed the Absolute Maximum Ratings specification for the voltage difference between V+ and DRV-(17V). Intermediate bootstrap voltage levels appropriate for the MAX736/MAX737/MAX759 are obtained by using a zener shunt (Figure 4).

Continuous-/Discontinuous

 continuous-conduction mode (DCM) by selecting highe or lower inductor values. In CCM, the inductor curren never decays to zero. In DCM, the inductor current slope is steep enough so it decays to zero before the end of the transistor off time. CCM allows the MAX736/MAX737 MAX739/MAX759 to deliver maximum load current, and is also slightly less noisy than DCM, because it doesn exhibit the ringing that occurs when the inductor curren reaches zero. However, DCM allows for lower output filte capacitor values because there is no continuous-feed back path through the inductor.

Figure 4. MAX736/MAX737/MAX759 Zener-Bootstrap Scheme

AC Compensation

Primary compensation for feedback stability is provided by a dominant pole created by the filter capacitance and load resistance. The ESR of the output capacitance and load resistance. The ESR of the outpu ilter capacitor introduces a zero in the loop response,
which tends to destabilize the loop. In the Standard Application Circuits (Figures 1a and 1b), the $150 \mu \mathrm{~F}$ output filter capacitor (C5) should have a maximum ESR over temperature of 0.5Ω in order to deliver full load at the minimum supply voltage. Operation a higher input voltages with lower inductor values (low enough to force the circuit to operate in discontinuous conduction mode) or at lower output current than the full load capability reduces the need for large filter capacitors. Surface-mount capacitors with very low ESR are available. Consequently, smaller capacitance values are adequate (see Figure 2)

Soft-Start Buffor
The voltage applied to SS determines the peak switch-current limit (see Typical Operating Characteristics). is pulled up to VREF internally through a 1 MQ resistor The maximum current limit can be fixed externally at a lower than normal value by clamping SS to a voltage less than VREF. An SS cycle is initiated whenever either an under

Figure 5. MAX759 Adjustable Output Voltage
voltage lockout or overcurrent fault condition triggers an internal transistor to discharge the SS capacitor to ground. Note that the SS capacitor should be at least 10 nF . A typical value is $0.1 \mu \mathrm{~F}$. When peak inductor currents at start-up are small, this capacitor may be omitted.

Undervoltage Lockout
The undervoltage lockout allows operation for supply voltages greater than 3.7 V typ (4 V guaranteed), with 0.25 V of tages greater than 3.7 V typ (4 V guaranteed), with 0.25 V of hysteresis. Internal control logic holds the output power undervoltage threshold, at which time an SS cycle begins.

Inductor Selection

Practical nominal inductor values are in the $10 \mu \mathrm{H}$ to $33 \mu \mathrm{H}$ range (see Component Selection Guide section) Low inductor values force discontinuous-conduction modes (see the Continuous-/Discontinuous-Conduction Modes section). The inductor must have a saturation (incremental) current rating greater than the peak switch current obtained from the Peak Switch Current vs. Load Current graph in the Typical Operating Characteristics.
The MAX736/MAX737MAX739/MAX759 contain slope compensation circuitry that improves current-loop stability. Slope compensation is optimized for inductance values in the $10 \mu \mathrm{H}$ to $33 \mu \mathrm{H}$ range.

-5V, -12V, -15V, and Adjustable Inverting Current-Mode PWM Regulators

Figure 6. MAX739 $+5 V$ Step-Down Application

Adjustable Output

Adjust the MAX759's output voltage from 0 V to -15 V by selecting the appropriate external resistor divider (Figure 5). Output voltages beyond -15 V require a transformer to 5). Output voltages beyond -15 V require a transformer to
protect the power MOSFET from overvoltage. With R4 protect the power MOSFET from overvoltage. With R4
feedback resistor ($5 \mathrm{k} \Omega$ to $15 \mathrm{k} \Omega$), a compensation feedback resistor ($5 \mathrm{k} \Omega$ to $15 \mathrm{k} \Omega$), a compensation
capacitor (typically 10 nF) from the output to CC gives best transient-response characteristics. Be careful to observe the Absolute Maximum Ratings on the difference between input voltage and output voltage.

Reference Bypass Capacitor

When the input voltage exceeds 11V (i.e. MAX739/MAX759 in non-bootstrapped mode) use $0.047 \mu \mathrm{~F}$ for reference capacitor C . In bootstrapped mode, refer to the Component Selection Guide section.
With the MAX736/MAX737, use $4.7 \mu \mathrm{~F}$ to $22 \mu \mathrm{~F}$ for the reference bypass capacitor. $22 \mu \mathrm{~F}$ provides the best stability when large output currents are required.

Printed Circuit Layout and Grounding
Good layout and grounding practices will help achieve low-noise, jitter-free operation. Minimize wiring lengths in the high-current paths, especially the distance between the inductor and the return leads of the filter and bypass capacitors (C2 and C5 of Figures 1 and 2). These highcurrent ground connections should be brought to a single common point (a star ground). Place a low-ESR bypas capacior 1 and 2). in Figures 1 and 2).

Figure 7. -24V LCD Power Supply
Refer to the MAX739 evaluation kit manual for the recom mended layout.

Component Selection Guide

The following guidelines are for component selection when the MAX736/MAX737/MAX739/MAX759 are operated in bootstrapped mode (i.e. DRV- connected to (MAX739M4X750)) For non-bootstrapped application Max Reforonce ee Reference Bypass section.
Surface-Mount Component Selection (see Figure 2) MAX739/MAX759
Over the extended temperature range, use the following component values: $\mathrm{LI}=10 \mu \mathrm{H}, \mathrm{C} 1=0.1 \mu \mathrm{~F}, \mathrm{C} 2=33 \mu \mathrm{~F}$ $\mathrm{VIN}=3.3 \mu \mathrm{~F}$ (tantalum), $\mathrm{C} 4=0.1 \mu \mathrm{~F}, \mathrm{CS}=33 \mu \mathrm{~F}$. When V $\mathrm{N} \geq 4.5 \mathrm{~V}$, this cicul Over C 3 is nol requird lor lange, res capacitor C3 is not required for load currents less than

MAX736/MAX737

Over both the commercial and extended temperature ranges, use the following component values: $L 1=10 \mu \mathrm{H}$ ranges, use the following component values: $\mathrm{LL}=10 \mu \mathrm{H}$, $\mathrm{C} 5=33 \mu \mathrm{~F}(20 \mathrm{~V})$. C 2 and C 5 must be low-ESR capacitors such as those available from Matsuo and Sprague When $V \mathbb{N} \geq 4.5 \mathrm{~V}$, this circuit provides 100 mA . When $\mathrm{V}+$ is $\geq 6 \mathrm{~V}$, the MAX736 provides up to 125 mA of outpu current (note that 6 V exceeds the input voltage range of the MAX737)

-5V, -12V, -15V, and Adjustable

 Inverting Current-Mode PWM RegulatorsTable 2. Component Suppliers

PRODUCTION METHOD	INDUCTORS	CAPACITORS
Surface Mount	Sumida USA: Phone (708) 956-0666 Japan: Phone (03) 3607-5111 FAX (03) 3607-5428 CD54-330 ($33 \mu \mathrm{H}$) CD54-100 $(10 \mu \mathrm{H})$ Coiltronics Phone (305) 781-8900 FAX (305) 782-4163 CTX 100 series	Matsuo USA: Phone (714) 969-2491 FAX (714) 960-6492 Japan: Phone (06) 332-0871 267 series Sprague Electric Company USA: Phone (603) 224-1961 FAX (603) 224-1430 595D Series
Miniature Through-Hole	Sumida USA: Phone (708) 956-0666 Japan: Phone (03) 3607-5111 FAX (03) 3607-5428 RCH654-330 $(33 \mu \mathrm{H})$ RCH $108-330(33 \mu \mathrm{H})$	Sanyo Os-Con USA: Phone (619) 661-6322 Japan: Phone (0720) 70-1005 FAX (0720) 70-1174 OS-CON series Low ESR Organic Semiconductor
Through-Hole	Renco Phone (516) 586-5566 FAX (516) 586-5562 RL 1284-33 ($33 \mu \mathrm{H}$)	Nichicon Phone (708) 843-7500 FAX (708) 843-2798 PL series Low ESR Electrolytics United Chemi-Con Phone (708) 696-2000 FAX (708) 640-6311 LXF series

For wide temperature applications using through-hole components, organic semiconductor capacitors are recommended (C2 and C5

Through-Hole Extended Temperature Range Component Selection (see Figure 1)

MAX739/MAX759

Use the following component values: $L 1=18 \mu \mathrm{H}$, $\mathrm{C} 1=1 \mu \mathrm{~F}, \mathrm{C} 2=150 \mu \mathrm{~F}(\mathrm{OS}-\mathrm{CON}$) C3 $=22 \mu \mathrm{~F}$ (tantalum) $\mathrm{C} 4=1.0 \mu \mathrm{~F}, \mathrm{C} 5=220 \mu \mathrm{~F}(\mathrm{OS}-\mathrm{CON}), \mathrm{R} 5=4.7 \mathrm{M} \Omega$. This circuit provides up to 250 mA (VOUT $=-5 \mathrm{~V}$) when $\mathrm{V}_{\mathrm{IN}} \geq 4.5 \mathrm{~V}$, and up to 300 mA when $\mathrm{V} \operatorname{IN} \geq 6 \mathrm{~V}$. Note that this is the only configuration that uses resistor R5. For output currents up to $150 \mathrm{~mA}, \mathrm{C} 4$ can be reduced to $0.1 \mu \mathrm{~F}$ and R5 can be omitted.

MAX736/MAX737

Use the following component values: $\mathrm{L} 1=10 \mu \mathrm{H}, \mathrm{C1}=1.0 \mu \mathrm{~F}$ $\mathrm{C} 2=220 \mu \mathrm{~F}(\mathrm{OS}-\mathrm{CON}), \mathrm{C} 3=22 \mu \mathrm{~F}($ tantalum $), \mathrm{C} 4=0.1 \mu \mathrm{~F}$ C5 $=100 \mu \mathrm{~F}$ (OS-CON). When VIN $\geq 4.5 \mathrm{~V}$, the circuit provides 100 mA . When $V+$ is 26 V , the MAX736 provides up to 125 mA of output current.

Through-Hole Commercial Temperature Range Component Selection (see Figure 1) MAX739/MAX759
Use the following component values: $\mathrm{L} 1=10 \mu \mathrm{H}$ to $33 \mu \mathrm{H}$, $\mathrm{C} 1=1 \mu \mathrm{~F}, \mathrm{C} 2 \& \mathrm{C} 5=150 \mu \mathrm{~F}$ (35V, Nichicon), C3 $=0 \mu \mathrm{~F}$ to $2.2 \mu \mathrm{~F}, \mathrm{C} 4=0.1 \mu \mathrm{~F}$.
With $L 1=10 \mu \mathrm{H}$ and C 3 omitted, when $\mathrm{V} I \mathrm{~N} \geq 4.5 \mathrm{~V}$, the circuit provides up to 200 mA . When $\mathrm{VIN} \geq 6 \mathrm{~V}$, the circuit provides up to 250 mA .

When $\mathrm{L} 1=15 \mu \mathrm{H}$ to $33 \mu \mathrm{H}, \mathrm{C} 3=2.2 \mu \mathrm{~F}$, and $\mathrm{VIN} \geq 4.5 \mathrm{~V}$, the circuit provides 250 mA . When VIN is $\geq 6 \mathrm{~V}$, the circuit provides up to 300 mA . If C3 is not used, the output current capability is reduced by approximately 50 mA . MAX736/MAX737
Use the following component values: $L 1=10 \mu \mathrm{H}$, $\mathrm{C} 1=1.0 \mu \mathrm{~F}, \mathrm{C} 2 \& \mathrm{C} 5=150 \mu \mathrm{~F}$ (35 V , Nichicon) , or up to 125 mA of output current.

-5V, -12V, -15V, and Adjustable Inverting Current-Mode PWM Regulators

The MAX739MAX759 can operate as step-down (buck) regulators with a positive output (Figure 6). Because the regulators winh a posilive oulput (Figure b). Because ine
supply current flows into the load, this +5 v step-down circuit offers good efficiency even at low load currents: 60% to 85% from 3 mA , up to the full-oad capability of 1 A . It requires a minimum load of 3 mA . The input voltage range is 9 V to 21 V . the input does not exceed 15V, ground DRV- for higher efficiency and remove the zener.
-24V LCD Power Supply
The LCD power supply circuit of Figure 7 generates an adjustable negative voltage for powering small LCD dis plays, and will deliver 30 mA at -24 V . Typical efficiency a 30 mA is 80%. A simple autotransformer safely steps up the output voltage beyond the voltage breakdown rating of the internal power MOSFET. The autotransforme (tapped inductor) specified on the schematic is a minia-
 proach is slighty better than a flyback transformer due to upe tugn Peor to the MAX759LCDKIT SO power upply evalution kit manual and Application Note.

Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX739CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX 739 CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX $739 \mathrm{C} / \mathrm{D}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX739EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MAX739EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX739MJD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 CERDIP**
MAX759CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX759CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX759C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX759EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MAX759EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX 759 MJD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 CERDIP**

Contact factory for dice specitications
*Contact factory for availability and processing to MIL-STD-883

Chip Topography

NOTE:
TRANSISTOR COUNT: $274 ;$
CONNECT SUBSTRATE TO ${ }_{+}$.

