

MC3163F • MC3063F MC3163L • MC3063L,P (54H73) (74H73)

Output Loading Factor $=10$
Total Power Dissipation $=176 \mathrm{~mW}$ typ/pkg
Propagation Delay Time $=10$ ns typ
Operating Frequency $=30 \mathrm{MHz}$ typ

The MC3163/3063 dual J-K master-slave flip-flop is useful in simple register and counter designs, or where relatively slow rise times may be encountered. A similar function, the MC3155/3055 (MC54H72/74H72) AND input J-K flip-flop is available for applications requiring multiple ANDed inputs.

Pin numbers for the $54 H 73 F / 74 H 73 F$ device are the same as the pin numbers for the MC3163F, L/3063F, L, P. These devices are available on special request.

ELECTRICAL CHARACTERISTICS
Test procedures are shown for only one
flip-flop. The other flip-flop is tested in
flip-flop. The other flip-flop is tested in
the same manner.
 \(\begin{array}{r}CLOCK

\frac{K}{RESET}

\hline\)| CLOCK |
| :---: |
| |
| RESET |

\hline\end{array}

[^0]
OPERATING CHARACTERISTICS

Data must be applied to the J-K inputs while the clock is low. When the clock input goes to the positive logic " 1 " state, the data at the J and K inputs is transferred to the master section, where it is stored until the clock changes to the positive logic " 0 " state. Data at the J and K inputs must not be changed while the clock is high. When the clock returns to the positive logic " 0 " state, information in the master section is transferred to the slave section.

Application of a logic " 0 " to the RESET input will
force the $\overline{\mathrm{Q}}$ output to the logic " 1 " state. The $\overline{\mathrm{RESET}}$ input overrides the clock.

Since no charge storage is involved in this flip-flop, rise and fall times are not important to its operation, Clock fall times as long as 1.0μ s will not adversely affect the operation of the flip-flop. The clock pulse need only be wide enough to allow the data to settle in the master section. This time, which is the setup time for a logic " 1 ", is 12 ns minimum.

SWITCHING TIME TEST CIRCUIT

Two pulse generators are required and must be slaved together for $t_{\text {sd }}$ tests.

- A load is connected to each output during the test.
$C_{T}=25 \mathrm{pF}=$ total parasitic capacitance, which includes probe, wiring, and load capacitances.
The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50 -ohm impedance. The 950 -ohm resistor and the scope termination impedance constitute a 20:1 attenuator probe. Coax shall be CT-070-50 or equivalent.

MC3163, MC3063 (continued)

TEST PROCEDURES

TEST	SYMBOL	INPUT			0	$\overline{\mathbf{0}}$	LIMITS		
		$\stackrel{\rightharpoonup}{\text { C }}$	J,K	$\overline{\mathbf{R}}$			Min	Max	Unit
Toggle Frequency	${ }^{\text {f }}$ Tog	A	2.4 V	5.0 V	\dagger	\dagger	25	-	MHz
Turn-On DelayClock to Output	${ }^{\text {t }}$ pd+	A	2.4 V	2.4 V	C	D	-	21	ns
Turn-Off DelayClock to Output	${ }^{\text {tpd }}$	A	2.4 V	2.4 V	C	D	-	27	ns
- Turn-On DelayReset to Output	${ }^{\boldsymbol{t}} \mathrm{pd}+$	A	2.4 V	B	C	D	-	13	ns
- Turn-Off DelayReset to Output	${ }^{\text {tpd }}$ -	A	2.4 V	B	C	D	-	24	ns

Letters shown in test columns refer to waveforms shown.

- Clock pulse negative edge must occur when reset pulse is in " 1 " state.
tOutput shall toggle with each input pulse.

VOLTAGE WAVEFORMS AND DEFINITIONS

NOTES

 When testing $t_{\text {pd }}+\mathrm{t}_{\mathrm{pd}}$, Clock characteristics are $\mathrm{t}^{+}=\mathrm{t}-\leq 7.0 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}(\overline{\mathrm{Clock}})=20 \mathrm{~ns}, \mathrm{PRF}=1.0 \mathrm{MHz}$.
2. Reset input dominates regardless of state of clock or J-K inputs.
3. $\overline{\text { Reset }}$ pulse characteristics $\mathrm{t}+=\mathrm{t}-57.0 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}(\overline{\text { Reset }})=16 \mathrm{~ns}$, PRF $=1.0 \mathrm{MHz}$

[^0]: the same manner

