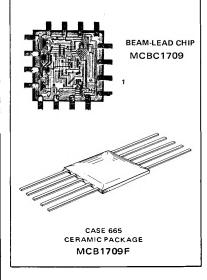
MCBC1709 MCB1709F

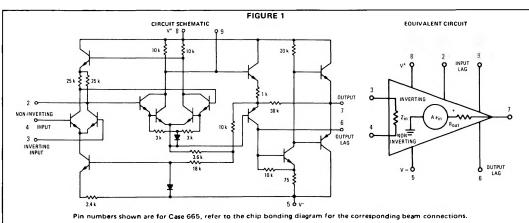
Advance Information

MONOLITHIC OPERATIONAL AMPLIFIER

Beam-lead sealed-junction technology and fabrication make the MCBC1709 and MCB1709F devices excellent choices for military, aerospace, and commercial applications; usages requiring a high degree of reliability under environmental conditions of severe temperature extremes, mechanical shock, and high humidity. Beam-lead products employ a silicon-nitride dielectric that hermetically seals the chip, eliminating the need for a hermetic package. The beam leads are gold cantilevered structures extending from the chip. These beams bond readily to a gold metalized substrate providing one of the most reliable interconnection systems known for semiconductor devices.

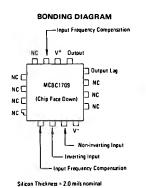
- High-Performance Open Loop Gain Characteristics
 AVOL = 45,000 typical
- Low Temperature Drift $-\pm 3.0~\mu\text{V}/^{0}\text{C}$
- Large Output Voltage Swing − ±14 V typical @ ±15 V Supply
- Low Output Impedance Z_{out} = 150 ohms typical

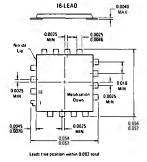

MAXIMUM RATINGS (TA = +25°C unless otherwise noted)


Rating	Symbol	Value	Unit
Power Supply Voltage	V ⁺ V-	+18 -18	Vde
Differential Input Signal	V _{in}	±5.0	Volts
Common Mode Input Swing	CMVin	±V ⁺	Volts
Load Current	IL	10	mA
Output Short Circuit Duration	t _S	5.0	s
Power Dissipation Derate above T _A = +25 ^o C	PD	500 3.3	mW/ ^o C
Operating Temperature Range	TA	-55 to +125	°c
Storage Temperature Range	T _{stg}	-65 to +150	°C

OPERATIONAL AMPLIFIER INTEGRATED CIRCUIT

MONOLITHIC SILICON




This is advance information on a new introduction and specifications are subject to change without notice. See Packaging Information Section for outline dimensions.

ELECTRICAL CHARACTERISTICS (V⁺ \approx +15 Vdc, V⁻ \approx -15 Vdc, T_A \approx +25°C unless otherwise noted)

Characteristic	Symbol	MCBC1709 and MCB1709F			4
		Min	Тур	Max	Unit
Open Loop Voltage Gain $(V_0 = \pm 10 \text{ V}, T_A = -55^{\circ}\text{C to} + 125^{\circ}\text{C})$	Avol	25,000	45,000	70,000	-
Output Impedance (f = 20 Hz)	Z _{out}	_	150	_	Ω
Input Impedance (f = 20 Hz)	Z _{in}	150	400	_	kΩ
Output Voltage Swing $(R_{\perp} = 10 \text{ k}\Omega)$ $(R_{\perp} = 2.0 \text{ k}\Omega)$	V _o	±12 ±10	±14 ±13	-	V _{peak}
Input Common-Mode Voltage Swing	CMVin	±8.0	±10		Vpeak
Common-Mode Rejection Ratio (f = 20 Hz)	CM _{rej}	70	90	_	dB
Input Bias Current $(T_A = +25^{\circ}C)$ $(T_A = -55^{\circ}C)$	l b	<u>-</u> -	0.2 0.5	0.5 1.5	μА
Input Offset Current (T _A = +25°C) (T _A = -55°C) (T _A = +125°C)	liol	-	0.05 - -	0.2 0.5 0.2	μА
Input Offset Voltage (T _A = +25°C) (T _A = -55°C to +125°C)	V _{io}	-	1.0	5.0 6.0	mV
Step Response (Gain = 100, 5.0% overshoot, $R_1 = 1.0 k\Omega$, $R_2 = 100 k\Omega$, $R_3 = 1.5 k\Omega$, $C_1 = 100 pF$, $C_2 = 3.0 pF$	tf tpd dV _{out} /dt ①	- - -	0.8 0.38 12	- - -	μς μς V/μς
(Gain = 10, 10% overshoot, $R_1 = 1.0 k\Omega$, $R_2 = 10 k\Omega$, $R_3 = 1.5 k\Omega$, $C_1 = 500 pF$, $C_2 = 20 pF$)	t _f t _{pd} dV _{out} /dt ①	- - -	0.6 0.34 1.7	- - -	μς μς V/μς
$ \left\{ \begin{array}{l} \text{Gain} = 1, 5.0\% \text{ overshoot,} \\ \text{R}_1 = 10 \text{k} \Omega, \text{R}_2 = 10 \text{k} \Omega, \text{R}_3 = \\ 1.5 \text{k} \Omega, \text{C}_1 = 5000 \text{pF}, \text{C}_2 = 200 \text{pF} \end{array} \right\} $	t _f t _{pd} dV _{out} /dt ①	- - -	2.2 1.3 0.25	- - -	μς μς V/μς
Average Temperature Coefficient of Input Offset Voltage (R _S = 50Ω , TA = -55° C to + 125° C) (R _S $\leq 10 k\Omega$, T _A = -55° C to + 125° C)	TC _{Vio}	- -	3.0 6.0	<u>-</u>	μV/ ^O
DC Power Dissipation (Power Supply = $\pm 15 \text{ V}$, $\text{V}_0 = 0$)	PD	_	80	165	mW
Positive Supply Sensitivity (VT constant)	s ⁺	-	25	150	μV/V
Negative Supply Sensitivity (V ⁺ constant)	s-	_	25	150	μV/\

 \bigcirc dV_{out}/dt = Siew Rate

PACKAGING AND HANDLING

The MCBC1709 beam-lead sealed-junction linear integrated circuit is evailable in chip form (non-encapsulated) as shown in the outline dimensional drawing. The shipping carrier for chips is a 2" square glass plate on which the chips are placed. A thin layer of polymer film covers the plate and retains the chips in place. The chips do not adhere to the film when it is lifted to remove them from the carrier. Care must be exercised when removing the chips from the carrier to ensure that the beams are not bent. A vacuum pickup is useful for this purpose.

See MC1709, MC1709C data sheet for typical characteristics curves.