## **OPERATIONAL AMPLIFIERS**

# **Advance Information**

MCC1709

**MCC1709C** 

#### MONOLITHIC OPERATIONAL AMPLIFIER CHIP

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCC1709 and MCC1709C employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- High-Performance Open Loop Gain Characteristics
  AVOL = 45,000 typical
- Low Temperature Drift  $\pm 3.0 \,\mu V/^{\circ}C$
- Large Output Voltage Swing ±14 V typical @ ±15 V Supply
- Low Output Impedance Zout = 150 ohms typical

| Rating                        | Symbol                           | Value           | Unit<br>Vdc<br>Volts<br>Volts |  |
|-------------------------------|----------------------------------|-----------------|-------------------------------|--|
| Power Supply Voltage          | V <sup>+</sup><br>V <sup>-</sup> | +18<br>-18      |                               |  |
| Differential Input Signal     | Vin                              | ±5.0            |                               |  |
| Common Mode Input Swing       | CMVin                            | ±V <sup>+</sup> |                               |  |
| Load Current                  | ۰.<br>۱                          | 10              | mΑ                            |  |
| Output Short Circuit Duration | ts                               | 5.0             | s                             |  |
| Operating Temperature Range   | тд                               | -55 to +125     | °C                            |  |
| Junction Temperature Range    | Tj                               | -55 to + 150    | °C                            |  |



**OPERATIONAL AMPLIFIER CHIP** 



This is advance information on a new introduction and specifications are subject to change without notice.

| Characteristic                                                                    | Symbol                                                     | MCC1709    |                    |        | MCC1709C           |                    |     |                   |
|-----------------------------------------------------------------------------------|------------------------------------------------------------|------------|--------------------|--------|--------------------|--------------------|-----|-------------------|
|                                                                                   |                                                            | Min        | Тур                | Max    | Min                | Тур                | Max | Unit              |
| Open Loop Voltage Gain<br>(V <sub>0</sub> = ± 10 V)                               | AVOL                                                       | 25,000     | 45,000             | 70,000 | 15,000             | 45,000             | _   | -                 |
| Output Impedance<br>(f = 20 Hz)                                                   | Zout                                                       | -          | 150                | _      | _                  | 150                | -   | <u>.</u> 2        |
| Input Impedance<br>(f = 20 Hz)                                                    | z <sub>in</sub>                                            | -          | 400                | _      | -                  | 250                | -   | kΩ                |
| Output Voltage Swing<br>(R <sub>L</sub> = 10 kΩ)<br>(R <sub>L</sub> = 2.0 kΩ)     | Vo                                                         | ±12<br>±10 | ±14<br>±13         |        | <u>+</u> 12<br>±10 | ±14<br>±13         |     | V <sub>peak</sub> |
| Input Common-Mode Voltage Swing                                                   | CMVin                                                      | -          | ±10                | -      | -                  | ±10                | -   | V <sub>peak</sub> |
| Common-Mode Rejection Ratio<br>(f = 20 Hz)                                        | CM <sub>rej</sub>                                          | _          | 90                 |        | _                  | 90                 | -   | dB                |
| Input Bias Current                                                                | ۱ <sub>b</sub>                                             | -          | 0.2                | 0.5    | -                  | 0.3                | 1.5 | μA                |
| Input Offset Current                                                              | il <sub>io</sub> l                                         | -          | 0.05               | 0.2    | -                  | 0.1                | 0.5 | μΑ                |
| Input Offset Voltage                                                              | IV <sub>io</sub> l                                         |            | 1.0                | 5.0    | -                  | 2.0                | 7.5 | mV                |
| Step Response                                                                     |                                                            |            |                    |        |                    |                    |     | <u> </u>          |
| Gain = 100, 5.0% overshoot                                                        | t <sub>f</sub><br>tpd<br>dV <sub>out</sub> /dt             | -          | 0.8<br>0.38<br>12  | -      | -                  | 0.8<br>0.38<br>12  | -   | μs<br>μs<br>V/μs  |
| Gain = 10, 10% overshoot                                                          | <sup>t</sup> f<br><sup>t</sup> pd<br>dV <sub>out</sub> /dt |            | 0.6<br>0.34<br>1.7 | -      |                    | 0.6<br>0.34<br>1.7 |     | μs<br>μs<br>V/μs  |
| Gain = 1, 5.0% overshoot                                                          | t <sub>f</sub><br>tpd<br>dV <sub>out</sub> /dt             |            | 2.2<br>1.3<br>0.25 |        |                    | 2.2<br>1.3<br>0.25 |     | μs<br>μs<br>V/μs  |
| Power Supply Current                                                              | 1D+                                                        | -          | 2.7                | 5.5    | -                  | 2.7                | 6.7 | mAdc              |
| DC Quiescent Power Dissipation<br>(Power Supply = $\pm 15$ V, V <sub>0</sub> = 0) | PD                                                         | -          | 80                 | 165    | _                  | 80                 | 200 | mW                |
| Positive Supply Sensitivity<br>(V <sup>-</sup> constant)                          | S+                                                         | -          | 25                 | 150    | _                  | 25                 | 200 | μV/V              |
| Negative Supply Sensitivity<br>(V <sup>+</sup> constant)                          | S-                                                         | -          | 25                 | 150    | -                  | 25                 | 200 | <i>μ</i> V/V      |

### ELECTRICAL CHARACTERISTICS (V<sup>+</sup> = +15 Vdc, V<sup>-</sup> = -15 Vdc, T<sub>A</sub> = +25<sup>o</sup>C unless otherwise noted)

See current MC1709/1709C data sheet for additional information

#### PACKAGING AND HANDLING

The MCC1709/MCC1709Coperational amplifier is now available as a single monolithic die or encapsulated in a variety of hermetic and plastic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for handling of dice. Tweezers are not recommended for this purpose.

dice. Tweezers are not recommended for this purpose. The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.