16K x 1 CMOS STATIC RAM

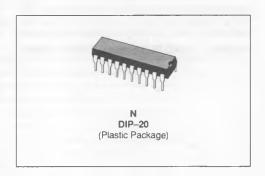
- 20. 25. AND 35NS ADDRESS ACCESS TIME
- EQUAL ACCESS AND CYCLE TIMES
- 20-PIN, 300 MIL PLASTIC
- ALL INPUT AND OUTPUT PINS TTL COMPA-TIBLE, LOW CAPACITANCE, AND PROTEC-TED AGAINST STATIC DISCHARGE
- 50µa CMOS STANDBY CURRENT (MK41H67)
- HIGH SPEED CHIP SELECT (MK41H66)
- JEDEC STANDARD PINOUT

TRUTH TABLE (MK41H66)

CS	WE	Mode	DQ	Power
Н	X	Deselect	High Z	Active
L	L	Write	High Z	Active
L	Н	Read	Data Out	Active

X = Don't Care

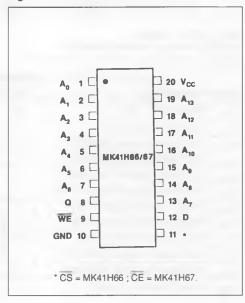
TRUTH TABLE (MK41H67)


CE	E WE Mod		DQ	Power
Н	Х	Deselect	High Z	Standby
L	L	Write	High Z	Active
L	Н	Read	Data Out	Active

DESCRIPTION

The MK41H66 and MK41H67 feature fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. Both require only a single + 5V ± 10 percent power supply. Both devices are fully TTL compatible.

The MK41 H67 has a Chip Enable power down feature which automatically reduces power dissipation when the CE pin is brought inactive (high). Standby power can be further reduced to microwatt levels by holding the Address and CE pins at full supply rail voltages.

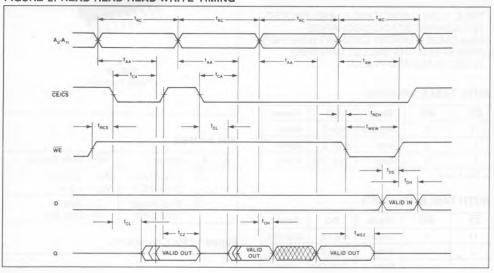

The MK41H66 Chip Select pin provides a high speed chip select access, allowing fast read cycles despite decoder delays.

PIN NAMES

A ₀ - A ₁₃ - Address	WE - Write Enable
CE - Chip Enable	GND - Ground
(MK41H67)	V _{CC} - + 5 V
CS - Chip Select	D - Data In
(MK41H66)	Q - Data Out

Figure 1: Pin Connections.

The MK41H66 Chip Select pin provides a high speed chip select access, allowing fast read cycles despite decoder delays.


OPERATIONS

READ MODE

The MK41H66/7 is in the Read Mode whenever WE (Write Enable) is high and CE/CS (Chip Enable/Select) is low, providing a ripple-through access

to any one of 16,384 locations in the static storage array. Valid data will be available at the Data Output pin (Q) within $t_{\rm AA}$ after the last address input signal is stable, providing that the CE/CS access time is satisfied. If CE/CS access time is not met, data access will be measured from the limiting parameter ($t_{\rm CA}$) rather than the address. The state of the Data Output pin is controlled by the CE/CS, and WE control signals. The Q may be in an indeterminate state at $t_{\rm CL}$, but the Q will always have valid data at $t_{\rm AA}$.

FIGURE 2. READ-READ-READ-WRITE TIMING

READ CYCLE TIMING AC ELECTRICAL CHARACTERISTICS (0°C \leq T_A \leq 70°C) (V_{CC} = 5.0 V \pm 10 percent)

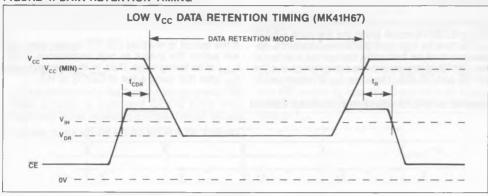
		MK41I	16X-20	MK41	16X-25	MK41	H 6X -35	UNITS	NOTES
SYM	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX		
t _{RC}	Read Cycle Time	20		25		35		ns	
t _{AA}	Address Access Time		20		25		35	ns	1
t _{CL}	Chip Enable to Low-Z (MK41H67)	5		5		5		ns	2
t _{CL}	Chip Select to Low-Z (MK41H66)	5		5		5		ns	2
t _{CA}	Chip Enable Access Time (MK41H67)		20		25		35	ns	1
t _{CA}	Chip Select Access Time (MK41H66)		10		12		15	ns	1
t _{RCS}	Read Command Setup Time	0		0		0		ns	
t _{RCH}	Read Command Hold Time	0		0		0		ns	
t _{OH}	Valid Data Out Hold Time	5		5		5		ns	1
t _{CZ}	Chip Enable to High-Z (MK41H67)		8		10		13	ns	2
t _{CZ}	Chip Select to High-Z (MK41H66)		7		8		10	ns	2
twez	Write Enable to High-Z		8		10		13	ns	2


WRITE MODE

The MK41H66/7 is in the Write Mode whenever the WE and CE/CS inputs are in the low state. CE/CS or WE must be high during address transitions. Addresses must be held valid throughout a write cycle. The Write begins with the concurrence of a low on WE and CE/CS. Therefore, t_{AS} is referenced to

the latter occurring edge of CE/CS, or WE.

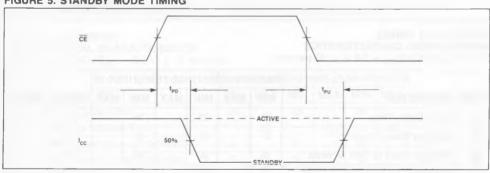
If the output is enabled ($\overline{\text{CE/CS}}$ is low), then $\overline{\text{WE}}$ will return the output to high impedance within t_{WEZ} of its falling edge. Data-In must remain valid t_{DH} after the rising edge of $\overline{\text{CE/CS}}$ or $\overline{\text{WE}}$.


FIGURE 3. WRITE-WRITE-WRITE-READ TIMING

WRITE CYCLE TIMING AC ELECTRICAL CHARACTERISTICS ($0^{\circ}C \le T_A \le 70^{\circ}C$) ($V_{CC} = 5.0 \text{ V} \pm 10 \text{ percent}$)

		MK41H	MK41H6X-20 MK41H6X-2		16X-25	5 MK41H6X-35			
SYM	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
twc	Write Cycle Time	20		25		35		ns	
1 _{AS}	Address Setup Time	0		0		0		ns	
t _{AW}	Address Valid to End of Write	16		20		30		ns	
t _{AH}	Address Hold after End of Write	0		0		0		ns	
t _{CW}	Chip Enable/Select to End of Write	18		22		32		ns	
t _{WEW}	Write Enable to End of Write	16		20		30		ns	
t _{DS}	Data Setup Time	12		14		15		ns	
t _{DH}	Data Hold Time	0		0		0		ns	
t _{WEL}	Write Enable to Low-Z	5		5		5		ns	2

FIGURE 4. DATA RETENTION TIMING


LOW V $_{CC}$ DATA RETENTION CHARACTERISTICS (0 $^{\circ}C \le T_{A} \le 70 \,^{\circ}C$)

SYM	PARAMETERS	MIN	MAX	UNIT	NOTES
V _{DR}	V _{CC} for Data Retention	2.0	V _{CC} (min)	V	7
ICCDR	Data Retention Power Supply Current		50	μА	7
t _{CDR}	Chip Deselection to Data Retention Time	0		ns	
t _R	Operation Recovery Time	t _{RC}	_	ns	

STANDBY MODE (MK41H67 Only)

The MK41H67 is in Standby Mode whenever $\overline{\text{CE}}$ is held at or above V_{IH} .

FIGURE 5. STANDBY MODE TIMING

STANDBY MODE AC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_A \le 70^{\circ}C) (V_{CC} = 5.0 \text{ V} + 10 \text{ percent})$

		MK41H67-20 MK41H67-25 MK41H6		167-35					
SYM	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
t _{PD}	Chip Enable High to Power Down		20		25		35	ns	
t _{PU}	Chip Enable Low to Power Up	0		0		0		ns	

APPLICATION

The MK41H66/7 operates from a 5.0 volt supply. It is compatible with all standard TTL families on all inputs and outputs. The device should share a solid ground plane with any other devices interfaced with it, particularly TTL devices. Additionally, because the outputs can drive rail-to-rail into high impedance loads, the 41H66/7 can also interface to 5 volt CMOS on all inputs and outputs. Refer to the normalized performance curves that follow.

Since very high frequency current transients will be associated with the operation of the MK41H66/7, power line inductance must be minimized on the circuit board power distribution network. Power and ground trace gridding or separate power planes can

be employed to reduce line inductance. Additionally, a high frequency decoupling capacitor should be placed next to each RAM. The capacitor should be $0.1\mu F$ or larger.

Though often times not thought of as such, the traces on a memory board are basically unterminated, low impedance transmission lines. As such they are subject to signal reflections manifested as noise, undershoots and excessive ringing. Series termination in close proximity to the TTL drivers can improve driver/signal path impedance matching. While experimentation most often proves to be the only practical approach to selection of series resistors, values in the range of 10 to 33 ohms often prove most suitable.

ABSOLUTE MAXIMUM RATINGS*

Parameter	Value	Unit
Voltage on any Pin Relative to GND	-1.0 to +7.0	V
Ambient Operating Temperature (T _A)	0 to + 70	°C
Ambient Storage Temperature (plastic)	-55 to +125	℃
Ambient Storage Temperature (ceramic)	-65 to +150	°C
Total Device Power Dissipation	1	W
Output Current per Pin	50	mA

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS (0°C≤TA≤70°C)

Symbol	Parameter		Unit	Notes		
Syllibol		Min.	Тур.	Max.	John	Notes
V _{CC}	Supply Voltage	4.5	5.0	5.5	V	3
GND	Supply Voltage	0	0	0	V	
V _{IH}	Logic 1 Voltage, All Inputs	2.2		V _{CC} + 1.0	V	3
V _{IL}	Logic 0 Voltage, All Inputs	- 0.3		0.8	V	3, 4

DC ELECTRICAL CHARACTERISTICS (0°C \leq T_A \leq 70°C) (V_{CC} = 5.0V \pm 10 percent)

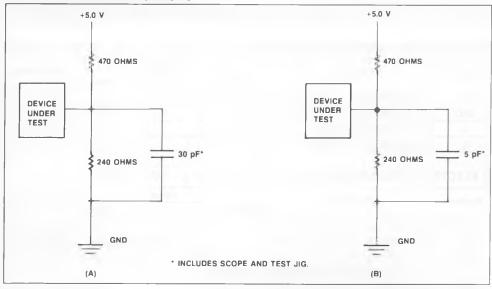
Symbol	Parameter		Unit	Notes		
Syllibol		Min.	Тур.	Max.		Notes
I _{CC1}	Average Power Supply Current			120	mA	5
I _{CC2}	TTL Standby Current (MK41H67 only)			10	mA	6
I _{CC3}	CMOS Standby Current (MK41H67 only)			50	μА	7
I _{IL}	Input Leakage Current (any input pin)	- 1		+ 1	μА	8
loL	Output Leakage Current (any output pin)	- 10		+ 10	μА	9
V _{OH}	Output Logic 1 Voltage (I _{OUT} = - 4mA)	2.4			V	3
V _{OL}	Output Logic 0 Voltage (I _{OUT} = + 8mA)			0.4	V	3

CAPACITANCE

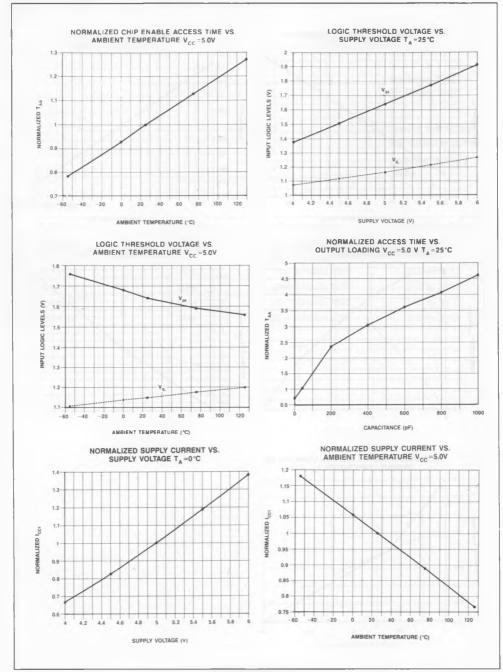
 $(T_A = 25^{\circ}C, f = 1.0 \text{ MHz})$

SYM	PARAMETER	TYP	MAX	UNITS	NOTES
C ₁	Capacitance on input pins	4	5	pF	10
C ₂	Capacitance on Q pins	8	10	pF	5, 10

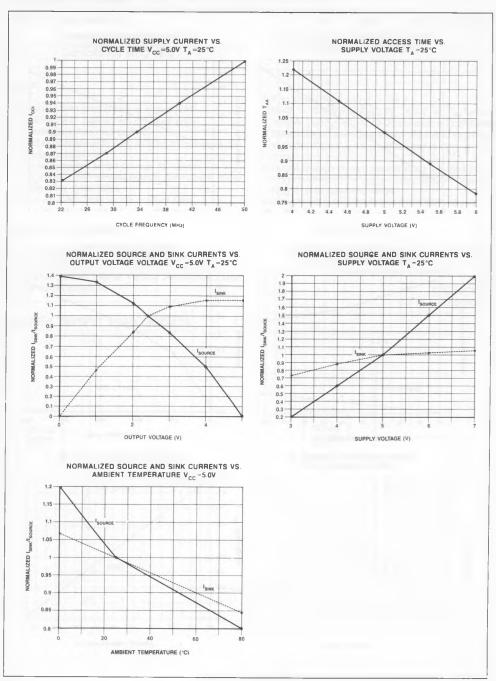
NOTES

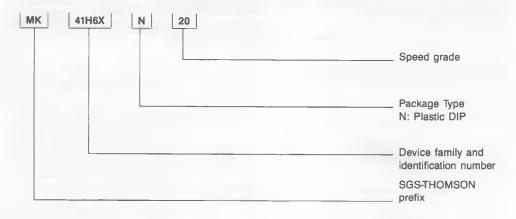

- 1. Measured with load shown in Figure 6(A).
- 2. Measured with load shown in Figure 6(B).
- 3. All voltages referenced to GND.
- V_{IL} may undershoot to -2.0 volts for 200ns or less during input transitions.
- I_{CC1} is measured as the average AC current with V_{CC} = V_{CC} (max) and with the outputs open circuit. tcycle = min. duty cycle 100%.
- 6. CE = VIH, All Other Inputs = Don't Care.

- 7. V_{CC} (max) $\geq CE \geq V_{CC} 03 \text{ V}$
 - GND + 0.3 $V \ge A_0 A_{13} \ge V_{IL}$ (min) or V_{IH} (max) $\ge A_0 A_{13} \ge V_{CC}$ -0.3 V. All Other Inputs = Don't Care.
- Input leakage current specifications are valid for all V_{IN} such that 0 V < V_{IN} < V_{CC}. Measured at V_{CC} = V_{CC} (max).
- Output leakage current specifications are valid for all VOUT such that 0 V < VOUT < VCC CE/CS = VIH and VCC in valid operating range.
- 10. Capacitances are sampled and not 100% tested.


AC TEST CONDITIONS

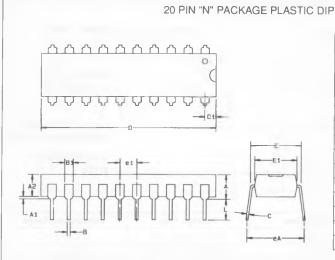
Input Levels	
Transition Times	5 ns
Input and Output Signal Timing Reference Level	1.5 V
Ambient Temperature	
V _{CC}	V ± 10 percent


FIGURE 6. OUTPUT LOAD CIRCUITS



NORMALIZED DC AND AC PERFORMANCE CHARACTERISTICS

NORMALIZED DC AND AC PERFORMANCE CHARACTERISTICS



ORDER CODES

Part Number	Access Time	Package Type	Temperature Range	
MK41H67N-20	20ns	20 Pin Plastic DIP	0°C to 70°C	
MK41H67N-25	25ns	20 Pin Plastic DIP	0°C to 70°C	
MK41H67N-35	35ns	20 Pin Plastic DIP	0°C to 70°C	
MK41H66N-20	20ns	20 Pin Plastic DIP	0°C to 70°C	
MK41H66N-25	25ns	20 Pin Plastic DIP	0°C to 70°C	
MK41H66N-35	35ns	20 Pin Plastic DIP	0°C to 70°C	

PACKAGE DESCRIPTION

Dim.	mm		Inches		
	Min.	Max.	Min.	Мах.	Notes
Α		5.334		.210	2
A1	0.381		.015		2
A2	3.048	3.556	.120	.140	
В	0.381	0.533	.015	.021	3
B1	1.27	1.778	.050	.070	
С	0.203	0.304	.008	.012	3
D	25.908	26.67	1.020	1.050	1
D1	1.524	1.905	.060	.075	
Е	7.62	8.255	.300	325	
E1	6.096	6.858	.240	.270	
e1	2.286	2.794	.090	.110	
eА	7.62	10.16	.300	.400	
L	3.048		.120		

Notes :

- 1. Overall length includes 010 in flash on either end of the package.
- Package standoff to be measured per jedec requirements.
 The maximum limit shall be increased by 003 in when solder lead finish is specified.