

MK48H89(N) -20/25/35

73,728-BIT 8K X 9 CMOS FAST SRAM

ADVANCE DATA

- BYTEWYDE 8K X 9 CMOS FSRAM
- FAST ACCESS TIMES, 20,25,35NS MAX.
- EQUAL ACCESS AND CYCLE TIMES
- LOW V_{CC} DATA RETENTION 2 VOLTS
- THREE STATE OUTPUT
- STANDARD 28-PIN PACKAGE IN 300 MIL PLA-STIC DIP

DESCRIPTION

The MK48H89 is a 73,728-bit static RAM, organized as 8K X 9 bits. It is fabricated using SGS-Thomson's low power, high performance, CMOS technology. The device features fully static operation requiring no external clocks or timing strobes, with equal address access and cycle times. It requires a single \pm 5V \pm 10% supply, and all inputs and outputs are TTL compatible.

The MK48H89 has a Chip Enable power down feature which sustains an automatic standby mode whenever either Chip Enable goes inactive (E₁ goes high or E₂ goes low). An Output Enable (G) pin provides a high speed tristate control, allowing fast read/write cycles to be achieved with the common-I/O data bus. Operational modes are determined by device control inputs W, G, E₁ and E₂, as summarized in the truth table.

PIN NAMES

A ₀ -A ₁₂	Address Inputs		
DQ ₀ -DQ ₈	Data I/O ₀₋₈		
Ē ₁	Chip Enable 1, Active Low		
E ₂	Chip Enable 2, Active High		
G G	(OE) Output Enable		
W	Write/read Enable		
Vcc,Vss	+5V, GND		

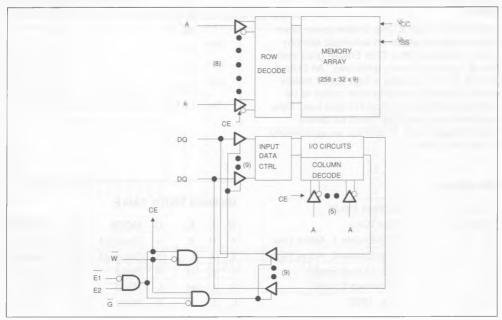
PIN CONNECTION

MK48H89 TRUTH TABLE

W	E ₁	E ₂	G	MODE	DQ	POWER
Χ	Н	X	X	Deselect	Hi-Z	Standby
Χ	X	L	X	Deselect	Hi-Z	Standby
Н	L	Н	Н	Read	Hi-Z	Active
Н	L	Н	L	Read	QOUT	Active
L	L	Н	X	Write	DIN	Active

READ MODE

The MK48H89 is in the Read mode whenever Write Enable (W) is high with Output Enable ($\overline{\text{G}}$) low, and both Chip Enables ($\overline{\text{E1}}$ and E2) are active. This provides access to data from nine of 73,728 locations in the static memory array, specified by the 13 address inputs . Valid data will be available at the nine Output pins within t_{AVOV} after the last stable address, providing $\overline{\text{G}}$ is low, $\overline{\text{E1}}$ is low, and $\overline{\text{E2}}$ is high. If Chip Enable or Output Enable access times are not met, data access will be measured from the limiting parameter (t_{E1LOV} , t_{E2HOV} , or t_{GLOV}) rather than the address. Data out may be indeterminate at t_{E1LOX} , t_{E2HOX} , and t_{GLOX} , but data lines will always be valid at t_{AVOV} .


WRITE MODE

The MK48H89 is in the Write mode whenever the \overline{W} and \overline{E}_1 pins are low, with E_2 high. Either Chip Enable pin or \overline{W} must be inactive during Address transitions. The Write begins with the

concurrence of both Chip Enables being active with W low. Therefore, address setup times are referenced to Write Enable and both Chip Enables as t_{AVWL} , t_{AVE1L} and t_{AVE2H} respectively, and is determined to the latter occurring edge. The Write cycle can be terminated by the earlier rising edge of E_1 , W, or the falling edge of E_2 .

If the Output is enabled $(E_1 = low, E_2 = high, G = low)$, then W will return the outputs to high impedance within t_{WLQZ} of its falling edge. Care must be taken to avoid bus contention in this type of operation. Data-in must be valid for t_{DVWH} to the rising edge of Write Enable, or to the rising edge of E_1 or the falling edge of E_2 , whichever occurs first, and remain valid t_{WHDX} .

MK48H89 BLOCK DIAGRAM

