National Semiconductor

MM54C221/MM74C221 Dual Monostable Multivibrator

General Description

The MM54C221/MM74C221 dual monostable multivibrator is a monolithic complementary MOS integrated circuit. Each multivibrator features a negative-transitontriggered input and a positive-transition-triggered input, either of which can be used as an inhibit input, and a clear input.

Once fired, the output pulses are independent of further transitions of the A and B inputs and are a function of the external timing components C_{EXT} and R_{EXT} . The pulse width is stable over a wide range of temperature and V_{CC} .

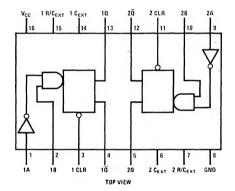
Pulse stability will be limited by the accuracy of external timing components. The pulse width is approximately defined by the relationship $t_{W(OUT)} \approx C_{EXT} R_{EXT}$. For further information and applications, see AN-138.

Features

- Wide supply voltage range
- Guaranteed noise margin

Low power TTL compatibility

High noise immunity


4.5 V to 15 V 1.0 V

- 0.45 V_{CC} (typ.)
 - fan out of 2 driving 74L

Connection Diagrams

Timing Component

Truth Table

IN	INPUTS			OUTPUTS		
CLEAR	A	B	٥	ā		
L	x	х	L	н		
×	н	x	L	н		
×	×	L	L	н		
н	L	t	ா	J		
н	1	н	L.	-U-		

H = High level

- L = Low level
- t = Transition from low to high t = Transition from high to low
- ___ ≃ One high level pulse
- T = One low level pulse
- X = Irrelevant

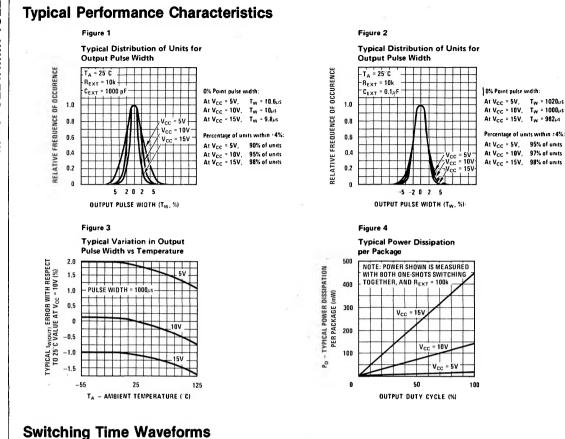
Absolute Maximum Ratings (Note 1)

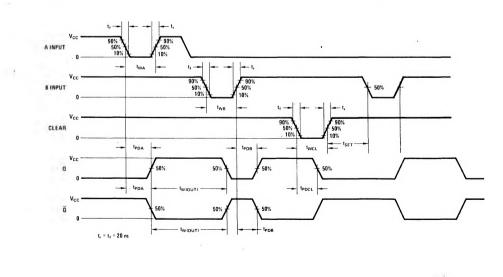
Voltage at Any Pin	-0.3 V to V _{CC} + 0.3 V
Operating Temperature Range	
MM54C221	-55°C to +125°C
MM74C221	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C
Package Dissipation	500 mW
Operating V _{CC} Range	4.5 V to 15 V
Absolute Maximum V _{CC}	18 V
R _{FXT} ≥ 80 V _{CC} (Ω)	
Lead Temperature (Soldering, 10 sec.)	300°C

DC Electrical Characteristics Max./min. limits apply across temperature range, unless otherwise noted.

	Parameter	Conditions	Min.	Тур.	Max.	Units
	CMOS to CMOS					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$	3.5 8.0			v v
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$			1.5 2.0	V V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0 V$, $I_O = -10 \mu A$ $V_{CC} = 10 V$, $I_O = -10 \mu A$	4.5 9.0			V V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0 V$, $I_0 = +10 \mu A$ $V_{CC} = 10 V$, $I_0 = +10 \mu A$			0.5 1.0	v v
IIN(1)	Logical "1" Input Current	$V_{CC} = 15 V, V_{IN} = 15 V$		0.005	1.0	μA
IIN(0)	Logical "0" Input Current	$V_{CC} = 15 V, V_{IN} = 0 V$	-1.0	-0.005		μA
lcc	Supply Current (Standby)	V _{CC} = 15 V, R _{EXT} = ∞, Q1, Q2 = Logic "0" (Note 3)		0.05	300	μA
lcc	Supply Current (During Output Pulse)	V _{CC} = 15 V, Q1 = Logic "1", Q2 = Logic "0" (Figure 4)		15		mA
		$V_{CC} = 5.0 V, Q1 = Logic "1", Q2 = Logic "0" (Figure 4)$		2.0		mΑ
	Leakage Current at R/C _{EXT} Pin	$V_{CC} = 15 V, V_{CEXT} = 5.0 V$		0.01	3.0	μA
	CMOS/LPTTL Interface				I	
V _{IN(1)}	Logical "1" Input Voltage		$V_{CC} - 1.5$ $V_{CC} - 1.5$			v v
V _{IN(0)}	Logical "0" Input Voltage	$\begin{array}{ccc} 54C & V_{CC} = 4.5V \\ 74C & V_{CC} = 4.75V \end{array}$			0.8 0.8	v v
V _{OUT(1)}	Logical "1" Output Voltage	$\begin{array}{lll} 54C & V_{CC} = 4.5 \ V, & I_{O} = -360 \ \mu A \\ 74C & V_{CC} = 4.75 \ V, & I_{O} = -360 \ \mu A \end{array}$	2.4 2.4			v v
V _{OUT(O)}	Logical "0" Output Voltage	$\begin{array}{lll} 54C & V_{CC} = 4.5 \ V, & I_O = 360 \ \mu A \\ 74C & V_{CC} = 4.75 \ V, & I_O = 360 \ \mu A \end{array}$	× .		0.4 0.4	v v
	Output Drive (See 54C/74C Famil	ly Characteristics Data Sheet) (Sh	ort Circuit C	Current)		
ISOURCE	Output Source Current (P-Channel)	$V_{CC} = 5.0 V$ $T_A = 25^{\circ}C, V_{OUT} = 0 V$	-1.75			mA
ISOURCE	Output Source Current (P-channel)	$V_{CC} = 10 V$ $T_A = 25^{\circ}C, V_{OUT} = 0 V$	-8.0			mA
ISINK	Output Sink Current (N-channel)	$V_{CC} = 5.0 V$ $T_A = 25^{\circ}C, V_{OUT} = V_{CC}$	1.75			mA
ISINK	Output Sink Current (N-channel)	$V_{CC} = 10 V$ $T_A = 25^{\circ}C, V_{OUT} = V_{CC}$	8.0			mA

	Parameter	Conditions	Min.	Тур.	Max.	Units
pd A,B	Propagation Delay from Trigger Input (A,B) to Output Q, Q	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$		250 120	500 250	ns ns
	Propagation Delay from Clear Input (CL) to Output Q, \overline{Q}	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$		250 120	500 250	ns ns
ts	Time Prior to Trigger Input (A,B) that Clear must be Set	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$	150 60	50 20		ns ns
t _{W(A,B)}	Trigger Input (A,B) Pulse Width	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$	150 70	50 30		ns ns
tw(CL)	Clear Input (CL) Pulse Width	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$	150 70	50 30		ns ns
tw(OUT)	Q or $\overline{\mathbf{Q}}$ Output Pulse Width	$V_{CC} = 5.0 V$, $R_{EXT} = 10 k$, $C_{EXT} = 0 pF$		900		ns
		$V_{CC} = 10 \text{ V}, \text{ R}_{EXT} = 10 \text{ k},$ $C_{EXT} = 0 \text{ pF}$		350		ns
	$V_{CC} = 15 V$, $R_{EXT} = 10 k$, $C_{EXT} = 0 pF$		320		ns	
	1	$V_{CC} = 5.0 V, R_{EXT} = 10k,$ $C_{EXT} = 1000 pF$ (Fig. 1)	9.0	10.6	12.2	μS
		$V_{CC} = 10 V, R_{EXT} = 10 k,$ $C_{EXT} = 1000 pF$ (Fig. 1)	9.0	10	11	μS
		$V_{CC} = 15 V, R_{EXT} = 10 k,$ $C_{EXT} = 1000 pF$ (Fig. 1)	8.9	9.8	10.8	μS
		$V_{CC} = 5.0 V, R_{EXT} = 10 k,$ $C_{EXT} = 0.1 \mu F$ (Fig. 2)	900	1020	1200	μS
		$V_{CC} = 10 V, R_{EXT} = 10 k,$ $C_{EXT} = 0.1 \mu F$ (Fig. 2)	900	1000	1100	μS
		$V_{CC} = 15 V, R_{EXT} = 10 k,$ $C_{EXT} = 0.1 \mu F$ (Fig. 2)	900	990	1100	μS
R _{ON}	ON Resistance of Transistor	$V_{CC} = 5.0 V$ (Note 4)		50	150	Ω
	between R/C _{EXT} to C _{EXT}	$V_{CC} = 10 V$ (Note 4) $V_{CC} = 15 V$ (Note 4)		25 16.7	65 45	Ω Ω
	Output Duty Cycle	R = 10k, C = 1000 pF R = 10k, C = 0.1μ F (Note 5)			90 90	%
C _{IN}	Input Capacitance	R/C _{EXT} Input (Note 2) Any Other Input (Note 2)		15 5.0	25	pF pF


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.


Note 2: Capacitance is guaranteed by periodic testing.

Note 3: In Standby (Q = Logic "0") the power dissipated equals the leakage current plus V_{CC}/R_{EXT}.

Note 4: See AN-138 for detailed explanation of RON.

Note 5: Maximum output duty cycle = R_{EXT} / R_{EXT} + 1000.

.....

1-96

MM54C221/MM74C221