MM54C85／MM74C85 4－Bit Magnitude Comparator

General Description

The MM54C85／MM74C85 is a four－bit magnitude compa－ rator which will perform comparison of straight binary or BCD codes．The circuit consists of eight comparing inputs（ $A 0, A 1, A 2, A 3, B 0, B 1, B 2, B 3$ ），three cascading Inputs $(A>B, A<B$ and $A=B)$ ，and three outputs $(A>B$ ， $A<B$ and $A=B$ ）．This device compares two four－bit words（ A and B ）and determines whether they are ＂greater than，＂＂less than，＂or＂equal to＂each other by a high level on the appropriate output．For words greater than four－bits，units can be cascaded by connecting the outputs（ $A>B, A<B$ ，and $A=B$ ）of the least significant stage to the cascade inputs $(A>B, A<B$ and $A=B)$ of the next－significant stage．In addition the least signifi－ cant stage must have a high level voltage（ $\mathrm{V}_{\text {IN（1）}}$ ）applied to the $A=B$ input and low level voltages $\left(V_{\operatorname{lN}(0)}\right)$ applied to $A>B$ and $A<B$ inputs．

Features
Wide supply voltage range 3.0 V to 15 V
－Guaranteed noise margin 1．0V
－High noise immunity $\quad 0.45 \mathrm{~V}_{\mathrm{CC}}$（typ．）
－Low power fan out of 2
TTL compatibility
driving 74L

Logic Diagrams

Absolute Maximum Ratings
(Note 1)
Voltage at Any Pin
$-0.3 V$ to $V_{C C}+0.3 V$
Operating Temperature Range

MM54C85

MM74C85
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
DC Electrical Characteristics
Parameter
Min./max. limits apply across temperature range unless otherwise noted.

	Parameter	Conditions	Min.	Typ.	Max.	Units
CMOS to CMOS						
$V_{\text {IN(1) }}$	Logical "1" Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$			$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$V_{\text {IN(0) }}$	Logical "0" Input Voltage	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
$\mathrm{V}_{\text {OUT (1) }}$	Logical "1" Output Voltage	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, I_{O}=-10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V}, I_{O}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
VOUT(0)	Logical "0" Output Voltage	$\begin{aligned} & \mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=+10 \mu \mathrm{~A} \\ & \mathrm{~V}_{C C}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=+10 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {(N(1) }}$	Logical "1" Input Current	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
$1 \mathrm{IN}(0)$	Logical "0" Input Current	$\mathrm{V}_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-1.0	-0.005		$\mu \mathrm{A}$
I_{CC}	Supply Current	$V_{C C}=15 \mathrm{~V}$		0.05	300	$\mu \mathrm{A}$
CMOS/LPTTL Interface						
$V_{\text {IN(1) }}$	Logical "1" Input Voltage	$\begin{aligned} & 54 C, V_{C C}=4.5 V \\ & 74 C, V_{C C}=4.75 V \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-1.5 \\ & \mathrm{~V}_{\mathrm{CC}}-1.5 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IN(0) }}$	Logical " 0 " Input Voltage	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & 74 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
$\mathrm{V}_{\text {OUT (1) }}$	Logical "1" Output Voltage	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \\ & 74 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Vout(0)	Logical "0" Output Voltage	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \\ & 74 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$

Package Dissipation	500 mW
Operating VCC Range	3.0 V to 15 V
VCC	18 V
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Output Drive (See 54C/74C Family Characteristics Data Sheet) (short circuit current)

Isource	Output Source Current (P-Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-1.75	-3.3	mA
Isource	Output Source Current (P-Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-8.0	-15	mA
$I_{\text {Sink }}$	Output Sink Current (N-Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	1.75	3.6	mA
Isink	Output Sink Current (N-Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	8.0	16	mA

AC Electrical Characteristics $T_{A}=25^{\circ} C, C_{L}=50 \mathrm{PF}$, unless otherwise specified.

	Parameter	Conditions	Min.	Typ.	Max.	Units
$t_{\text {pd }}$	Propagation Delay from any A or B Data Input to any Data Output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 250 \\ & 100 \end{aligned}$	$\begin{aligned} & 600 \\ & 300 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {pd }}$	Propagation Delay Time from any Cascade Input to any Output	$\begin{aligned} & V_{c C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 200 \\ .100 \end{array}$	$\begin{aligned} & 500 \\ & 250 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Any Input		5.0		pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	(Note 3) Per Package		45.		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: $\mathrm{C}_{\text {PD }}$ determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note - AN-90.

Typical Applications

rour Digit Comparator

Unused inputs must be tied to an appropriate logic level.

Truth Table

COMPARING INPUTS				CASCADING INPUTS			OUTPUTS		
A3, B3	A2, 82	A1, B1	AO, BO	$A>B$	$A<B$	$A=B$	$A>8$	$A<B$	$A=8$
$\mathrm{A} 3>\mathrm{B} 3$	x	x	x	x	X	X	H	L	L
$A 3<B 3$	x	x	x	x	x	x	L	H	L
$A 3=B 3$	A2 $>$ B2	x	x	x	x	x	H	L	L
$A 3=B 3$	A2 < B2	x	x	x	x	x	L	H	L
$A 3=B 3$	$A 2=B 2$	A $1>\mathrm{Bl}$	x	x	x	x	H	L	L
$A 3=B 3$	$A 2=B 2$	$A_{1}<B_{1}$	x	x	x	x	L	H	L
$A 3=B 3$	$A 2=B 2$	$A_{1}=B_{1}$	A0 $>$ BO	x	x	X	H	L	L
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	A $0<B 0$	X	\times	X	L	H	L
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A 0=B 0$	H	L	L	H	L	L
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A O=B 0$	L	H	L	L	H	L
$A 3=B 3$	- $A 2=B 2$	$A 1=B 1$	$A 0=B 0$	L	L	H	L	L	H
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A 0=B 0$	L	H	H	L	H	H
$A 3=B 3$	$A 2=B 2$	$A 1=81$	$A O=B O$	H	L	H	H	L	H
$A 3=B 3$	$A 2=82$	$A 1=B 1$	$A 0=B 0$	H	H	H	H	H	H
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A 0=B 0$	H	H	L	H	H	L
$A 3=B 3$	$A 2=B 2$	$A 1=81$	$A 0=B 0$	L	L	L	L	L	L

