MM74C925, MM74C926, MM74C927, MM74C928 4-Digit Counters with Multiplexed 7-Segment Output Drivers

General Description

These CMOS counters consist of a 4 -digit counter, an internal output latch, NPN output sourcing drivers for a 7 -segment display, and an internal multiplexing circuitry with four multiplexing outputs. The multiplexing circuit has its own free-running oscillator, and requires no external clock. The counters advance on negative edge of clock. A high signal on the Reset input will reset the counter to zero, and reset the carryout low. A low signal on the Latch Enable input will latch the number in the counters into the internal output latches. A high signal on Display Select input will select the number in the counter to be displayed; a low level signal on the Display Select will select the number in the output latch to be displayed.

The MM74C925 is a 4 -decade counter and has Latch Enable, Clock and Reset inputs.

The MM74C926 is like the MM74C925 except that it has a display select and a carry-out used for cascading counters. The carry-out signal goes high at 6000, goes back low at 0000.

The MM74C927 is like the MM74C926 except the second most significant digit divides by 6 rather than 10. Thus, if the clock input frequency is 10 Hz , the display would read tenths of seconds and minutes (i.e., 9:59.9).

The MM74C928 is like the MM74C926 except the most significant digit divides by 2 rather than 10 and the
carry-out is an overflow indicator which is high at 2000, and it goes back low only when the counter is reset. Thus, this is a $31 / 2$-digit counter.

Features

$\begin{array}{lr}\text { - } \text { Wide supply voltage range } & 3 \mathrm{~V} \text { to } 6 \mathrm{~V} \\ \text { - } \text { Guaranteed noise margin } & 1 \mathrm{~V} \\ \text { - High noise immunity } & 0.45 \mathrm{~V}_{\mathrm{CC}} \text { (typ.) } \\ \text { - High segment sourcing current } & 40 \mathrm{~mA}\end{array}$ $@ V_{c c}-1.6 \mathrm{~V}, V_{c c}=5 \mathrm{~V}$
■ Internal multiplexing circuitry

Design Considerations

Segment resistors are desirable to minimize power dissipation and chip heating. The DS75492 serves as a good digit driver when it is desired to drive bright displays. When using this driver with a 5 V supply at room temperature, the display can be driven without segment resistors to full illumination. The user must use caution in this mode however, to prevent overheating of the device by using too high a supply voltage or by operating at high ambient temperatures.

The input protection circuitry consists of a series resistor, and a diode to ground. Thus input signals exceeding V_{cc} will not be clamped. This input signal should not be allowed to exceed 15 V .

Connection Diagram

Dual-In-Line Package MM74C925

Functional Description

Reset	- Asynchronous, active high
Display Select	High, displays output of counter Low, displays output of latch
Latch Enable	High, flow through condition Low, latch condition
Clock	- Negative edge sensitive

Clock

- Negative edge sensitive

Absolute Maximum Ratings (Note 1)

Voltage at Any Output Pin
Voltage at Any Input Pin
Operating Temperature Range (T_{A})
Storage Temperature Range
Package Dissipation
Operating $V_{\text {cc }}$ Range
$V_{c c}$
Lead Temperature (Soldering, 10 seconds)

Gnd -0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Gnd -0.3 V to +15 V
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Refer to $P_{D(M A X)}$ vs T_{A} Graph
3 V to 6 V
6.5 V
$300^{\circ} \mathrm{C}$

DC Electrical Characteristics Min/max limits apply at $-40^{\circ} \mathrm{C} \leq T_{j} \leq+85^{\circ} \mathrm{C}$, unless otherwise noted.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.
Note 4: θ_{jA} measured in free-air with device soldered into printed circuit board.

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ ，unless otherwise noted

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	$v_{\mathrm{cc}}=5.0 \mathrm{~V},$ Square Wave Clock	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C} \\ & T_{j}=100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 2 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$t_{\text {r }}, t_{4}$	Maximum Clock Rise or Fall Time	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$				15	$\mu \mathrm{s}$
${ }^{\text {twe }}$	Reset Pulse Width	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C} \\ & T_{i}=100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 250 \\ & 320 \end{aligned}$	$\begin{aligned} & 100 \\ & 125 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{\text {twle }}$	Latch Enable Pulse Width	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	$T_{i}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{i}}=100^{\circ} \mathrm{C}$	$\begin{aligned} & 250 \\ & 320 \end{aligned}$	$\begin{aligned} & 100 \\ & 125 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {SET }}$（CK，Le）	Clock to Latch Enable Set－Up Time	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	$\begin{aligned} & T_{i}=25^{\circ} \mathrm{C} \\ & T_{j}=100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 2500 \\ & 3200 \end{aligned}$	$\begin{aligned} & 1250 \\ & 1600 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {LR }}$	Latch Enable to Reset Wait Time	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	$\begin{aligned} & T_{i}=25^{\circ} \mathrm{C} \\ & T_{i}=100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & -100 \\ & -100 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{\text {t }}^{\text {SEt }}$（R，LE）	Reset to Latch Enable Set－Up Time	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	$\begin{aligned} & T_{i j}=25^{\circ} \mathrm{C} \\ & T_{j}=100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 320 \\ & 400 \end{aligned}$	$\begin{aligned} & 160 \\ & 200 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$f_{\text {mux }}$	Multiplexing Output Frequency	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$			1000		Hz
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Any Input（Note 2）			5		pF

Typical Performance Characteristics

Logic and Block Diagrams

Note．$V_{D}=$ Voltage across digit driver．

MM74C927

MM74C926

MM74C928

Input Protection

Common Cathode LED Display

Segment Identification
ロ1コヨ4 5曰7日日

Switching Time Waveforms

