QIII semiconductor

MSC6458

OKI 4-BIT 1-CHIP MICROCONTROLLER

GENERAL DESCRIPTION

The MSC6458 is a high-speed, 4-bit 1-chip microcontroller with built-in FLT drivers/controllers developed to support relatively large control systems.

FEATURES

- ROM: 8000×8 bits
- RAM: 512×4 bits
- Ports: I/O 24 ports (8 having IOL = 20 mA) Input 9 (2 also serving as interrupt inputs)
- FLT drivers (Withstand $12(1 \mathrm{OH}=20 \mathrm{~mA})$ voltage 40V):
$12(1 \mathrm{OH}=6 \mathrm{~mA})$
- Interrupts: 7 lines (2 external, 5 internal)
- Built-in counters: 12 bits, timebase counter 16 bits, programmable counter 8 bits, high-speed programmable timer/event counter
- Serial I/O: Built-in 8-bit SIO register
- Oscillation circuit: Crystal or ceramic oscillation
- Number of instructions: 147
- Cycle time: 930 ns (4.3 MHz)
- Operating ranges: 4.5 to 5.5 V (4.3 MHz)

Voltage: 3.0 to $6.0 \mathrm{~V}(1 \mathrm{MHz})$
Temperature: -40 to $+85^{\circ} \mathrm{C}$

- Power dissipation (typical)
(display off): $9 \mathrm{~mA}(5 \mathrm{~V}, 4.3 \mathrm{MHz}$)

$$
2 m A(3 V, 1 M H z)
$$

- Power down: STOP instruction
- Package: 64-pin shrink DIP/64-pin FLAT

BLOCK DIAGRAM

LOGIC SYMBOL

PIN CONFIGURATION (TOP VIEW)

64 PIN PLASTIC SHRINK DIP		

PIN DESCRIPTION

Terminal	Input/ Output	Function	When reset
$\begin{aligned} & \hline \mathrm{POO} \\ & \mathrm{PO1/SCK} \\ & \mathrm{PO2} / \mathrm{SO} \\ & \mathrm{PO} / \mathrm{SI} \end{aligned}$	Input/ Output	I/O port I/O port (also used as serial clock input $\overline{\mathrm{SCK}}$) I/O port (also used as serial data output SO) I/O port (also serial data input SI)	"1"
$\begin{aligned} & \mathrm{P} 10 / \overline{\mathrm{CIN}} \\ & \mathrm{P} 11 / \overline{\mathrm{TMO}} \\ & \mathrm{P} 12 / \overline{\mathrm{TCK}} \\ & \mathrm{P} 13 \end{aligned}$	Input/ Output	I/O port (also used as count input $\overline{\mathrm{CIN}}$) I/O port (also used as timer output TMO) I/O port (also used timer clock input TCK) I/O port	"1"
	Input	Input Port with Latch (falling edge sensitive) also used as interrupt input INTO Input Port with Latch (' 0 ' level sensitive) also used as interrupt input INT1	-
P30 ~ P33	Input/ Output	I/O port	"1"
P60 ~ P63	Input/ Output	I/O port	"0"
$\begin{aligned} & P 40 \sim \text { P43 } \\ & \text { P50 P53 } \end{aligned}$	Output/ Input	$1 / \mathrm{O}$ port ($\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \mathrm{MAX}$)	"0"
$\begin{aligned} & \hline \text { P70~P72 } \\ & \text { P80 } \sim \text { P83 } \end{aligned}$	Input	Input port with pull down register Pull down register of P70~P72 can be removed by instruction	
SEGO ~ SEG11	Output	FLT segment driver (dynamic)	"0"
$\begin{aligned} & \text { T11/SEG12 } \\ & \sim \text { T8/SEG15 } \end{aligned}$	Output	FLT segment driver (dynamic)/Timing output	"0"
$\begin{aligned} & \text { T7/OUT7 } \\ & \text { ~TO/OUTO } \end{aligned}$	Output	FLT segment driver (static)/Timing output	"0"
$\begin{aligned} & \text { OSCO } \\ & \text { OSC1 } \end{aligned}$	Input/ Output	Crystal connection terminal for system clock oscillation	-
RESET	Input	System reset input	-
TEST	Output	Test pin (Open)	-
VFLT	Input	Power supply for FLT driving	-
VDD GND	Input	System Power Supply	-

FUNCTIONAL DESCRIPTION

1. ROM

The ROM, organized in 8 bits, has a maximum capacity of 8000 bytes.

2. RAM

The RAM is organized in 4 bits per word, with a capacity of 512 words.

It is separated into two banks each 256 words long. Bank selection is accomplished via internal ports. The RAM location in the banks is addressed by the H and L registers or by the second byte of each instruction.

3. Ports ($241 / 0,7$ input)

The 24 pseudo-bidirectional I/O ports effect or control the exchange of data with external sources. The ports are specified by the L register or by codes contained in instructions. Ports 4 and 5 may draw 10 L up to 20 mA .

The seven input ports have built-in pulldown resistors. Up to 84 keys can be scanned by assembling them in key matrices with the timing outputs of the FLT drivers (with 12 segments \times 12 timings on display; also during automatic display).

4. Interrupt Input Pins (2 terminals)

The INTO/P20 and INT1/P22 pins are interrupt input pins. External interrupt request flags of $\overline{N T O} / P 20$ pin and $\overline{N T} 1 / P 22$ pin can be set by using interrupt input pins:
INTO/P20 pin ... positive edge or negative edge input.
INT1/P22 pin ... "O" level input.
These flags are automatically reset when the appropriate external interrupts occur. These pins are available for use as input ports when not used as interrupt input pins.
5. FLT Drivers/Controllers (Automatic Display)

The FLT drivers have a withstand voltage of 40 V in the positive direction from the GND level. They comprise 12 ports that can draw 20 mA as IOH (Timing outputs) and 12 ports that can draw 6 mA as such (Segment outputs).

A choice of four display modes is supported as listed below. A display RAM area is allocated as part of the RAM space. Data is automatically displayed when transferred to the display RAM. (Two different display frequencies are selectable.) Static output data can be displayed by controlling the FLT drivers by programming. Display modes (@4.194304 MHz)
(1) 12 Segments $\times 12$ Timings $1 / 12$ duty ($85.3 / 341.3 \mathrm{~Hz}$)
(2) 16 Segments $\times 8$ Timings
$1 / 8$ duty ($128 / 512 \mathrm{~Hz}$)
(3) 16 Segments $\times 4$ Timings +4 output*
$1 / 4$ duty ($256 / 1024 \mathrm{~Hz}$)
(4) 16 Segments +8 output*

Program controlled
*output: static outputs

6. Stack (STACK) and Stack Pointer (SP)

The PC is saved in the stack when an interrupt occurs or a CAL instruction is executed. It is recovered by the execution of an RT instruction.

One fourth of the RAM space (128 words maximum, 32 levels) is available as a stack area. A 4-word RAM area is used for "one" level in the stack.

The stack pointer is an 8-bit up-down counter (the MSB and 2 bits from LSB being fixed at ' 1 ') indicating the next stack address to use. It enables the RAM space to be used as a pushdown stack. Data can also be transferred between stack pointer and the H / L registers.

7. Interrupts

Seven interrupt lines are provided for eight sources and eight levels of interrupts as follows (two external inputs):
(1) Display interrupt

Update to timing signals (positive edge)
(2) External interrupt1

Negative edge on the $\overline{\mathrm{NTO}} / \mathrm{P} 20$ pin
(3) External interrupt2

Positive edge on the $\overline{\mathrm{INTO}} / \mathrm{P} 20$ pin
(4) External interrupt3
' 0 ' input on the $\overline{\mathrm{NT}} 1 / \mathrm{P} 22$ pin
(5) Timebase interrupt

12-Bit timebase counter overflow
(6) Timer interrupt

16-Bit timer and timer register matched signal (7) Counter interrupt

8-Bit counter and counter register matched signal
(8) Serial/O interrupt

8 -Bit shift register shift end signal

8. 12-Bit Timebase Counter

The timebase counter is made up of a 12-bit binary counter. It generates an interrupt request every time it overflows as a result of dividing the OSCO input 2^{12}.

9. 16-Bit Programmable Timer/Event Counter

Comprising a 16 -bit register, a 16 -bit binary counter, a comparator circiut, and a control circuit, the programmable timer generates an interrupt request when the register and counter values are matched.

10. 8-Bit High-Speed Programmable Timmer/Event Counter

The high-speed programmable timer/event counter comprises an 8 -bit register, an 8 -bit binary counter, a comparator circuit, and a control circuit. Starting and stopping the counter can be controlled by instructions. It generates an interrupt request when the register and counter values are matched.

11. 8-Bit Serial I/O

Serial I/O consists of an 8-bit shift register, a 3-bit shift counter, and a control circuit. It is used for serial data input and output. Serial data input and output takes place synchronized with a shift clock, which is selectable between internal and external clocks. The shift counter automatically terminates a data transfer on counting eight shift clock pulses and generates an interrupt request.

12. Registers (Acc, H, L, F)

The accumulator (Acc) is a 4-bit register used to perform data transfers or calculations with the RAM, other registers, ports and so on.

The H and L registers are each a 4-bit register. They transfer data to and from Acc and SP (stack pointer) and address the RAM. The L register is also used to specify ports to use.

The F register is made up of four independent flip-flops. It can be used as a program "flag" or general-purpose register because each of these flip-flops permits set/reset testing and transferring 4 -bit parallel data to and from Acc by instructions.
13. Timing Control (TC)

A ' 0 ' input on the $\overline{\text { RESET }}$ pin for a certain period initializes internal circuitry and ports.

As the input side of clock pulses, the OSCO pin accepts clock pulses from an external source. Clock pulses may also be obtained by configuring an oscillation circuit with a crystal oscillator or ceramic resonator connected to OSCO and OSC1.

Load Instructions, etc.

Mnemonic		Code	Bytes	Cycles	Description
LAI	n	90-9F	1	1	$A \leftarrow n$
LLI	n	80-8F	1	1	$\mathrm{L} \leftarrow \mathrm{n}$
LHI	n	3E.7n	2	2	$\mathrm{H} \leftarrow \mathrm{n}$
LHLI	nn	$15 \cdot \mathrm{nn}$	2	2	$\mathrm{HL} \leftarrow \mathrm{nn}$
LMI	nn	$14 \cdot n n$	2	2	$\mathrm{M}(\mathrm{w}) \leftarrow \mathrm{nn}$
LAL		21	1	1	$A \leftarrow L$
LLA		2D	1	1	$L \leftarrow A$
LAH		22	1	1	$A \leftarrow H$
LHA		2E	1	1	$H \leftarrow A$
LAM		38	1	1	$A \leftarrow M$
LMA		$2 F$	1	1	$M \leftarrow A$
LAM +		24	1	1	$A \leftarrow M, L \leftarrow L+1$, Skip if $L=$ " 0 "
LAM -		25	1	1	$A \leftarrow M, L \leftarrow L-1$, Skip if $L=$ "F"
LMA+		26	1	1	$M \leftarrow A, L \leftarrow L+1$, Skip if $L=$ " 0 "
LMA-		27	1	1	$M \leftarrow A, L \leftarrow L-1$, Skip if $L=$ " F "
LAMM	n2	39-3B	1	1	$A \leftarrow M, H \leftarrow H \forall n 2$
LAMD	mm	$10 \cdot \mathrm{~mm}$	2	2	$A \leftarrow M d$
LMAD	mm	$11 \cdot \mathrm{~mm}$	2	2	$\mathrm{Md} \leftarrow \mathrm{A}$
X		28	1	1	$A \longleftrightarrow M$
X+		3 C	1	1	$A \longleftrightarrow M, L \leftarrow L+1$, Skip if $L=$ " 0 "
X-		2 C	1	1	$A \longleftrightarrow M, L \leftarrow L-1$, Skip if $L=$ " F "
XM	n2	29-2B	1	1	$A \longleftrightarrow M, H \leftarrow H \forall n 2$
LMT	mm	$19 . \mathrm{mm}$	2	4	$\mathrm{M}(\mathrm{w}) \leftarrow \mathrm{T}(\mathrm{Md}(\mathrm{w}), \mathrm{A})$
LAF		3E. 54	2	2	$A \leftarrow F$
LFA		3E.5C	2	2	$F \leftarrow A$
LHLS		3E. 53	2	2	$\mathrm{HL} \leftarrow \mathrm{SP}$
LSHL		3E.5B	2	2	$\mathrm{SP} \leftarrow \mathrm{HL}$
IP		20	1	1	$A \leftarrow P$
OP		23	1	1	$P \leftarrow A$
IPD	p	3D $\cdot \mathrm{pD}$	2	2	$A \leftarrow P p$
OPD	p	3D $\cdot \mathrm{pC}$	2	2	$\mathrm{Pp} \leftarrow \mathrm{A}$
OPT		18	1	3	$\mathrm{P} 4, \mathrm{P} 5 \leftarrow \mathrm{~T}(\mathrm{M}(\mathrm{w}), \mathrm{A})$

Interrupt Control Instructions

Mnemonic	Code	Bytes	Cycles	Description
MEI	3E. 60	2	2	MEIF \leftarrow "1"
MDI	3E. 61	2	2	MEIF ¢ "0"
EIXD	3D - E8	2	2	EIXDF $\leftarrow 41 "$
EIXU	3D - E9	2	2	EIXUF \leftarrow "1"
EIXL	3D - EA	2	2	EIXLF \leftarrow "1"
EIDP	3D - EB	2	2	EIDPF $\leftarrow 41 "$
EITB	3D - D8	2	2	EITBF \leftarrow " 1 "
EITM	3D - D9	2	2	EITMF <-"1"
EICT	3D - DA	2	2	EICTF ¢- "1"
EISR	3D - DB	2	2	EISRF ¢ "1"
DIXD	3D - E4	2	2	EIXDF ¢-"0"
DIXU	3D - E5	2	2	EIXUF <-"0"
DIXL	3D - E6	2	2	EIXLF ¢- "0"
DIDP	3D - E7	2	2	EIDPF <-"0"
DITB	3D - D4	2	2	EITBF $¢-00$
DITM	3D - D5	2	2	EITMF \&- "0"
DICT	3D - D6	2	2	EICTF --"0"
DISR	3D - D7	2	2	EISRF ¢-"0"
TIXD	3D E0	2	2	Skip if EIXDF = "1"
TIXU	3D - E1	2	2	Skip if EIXUF = "1"
TIXL	3D - E2	2	2	Skip if EIXLF = "1"
TIDP	3D - E3	2	2	Skip if EIDPF $=$ " 1 "
TITB	3D - D0	2	2	Skip if EITBF $=$ " 1 "
TITM	3D - D1	2	2	Skip if EITMF $=$ " 1 "
TICT	3D - D2	2	2	Skip if EICTF = "1"
TISR	3D - D3	2	2	Skip if EISRF $=$ " 1 "
TQXD	3D 20	2	2	Skip if IRQXDF $=$ "1"
TQXU	3D $\cdot 21$	2	2	Skip if IRQXUF = "1"
TQXL	3D $\cdot 22$	2	2	Skip if IRQXLF = "1"
TQDP	3D $\cdot 23$	2	2	Skip if IRQDPF = "1"
TQTB	3D - C0	2	2	Skip if IRQTBF = "1"
TQTM	3D $\cdot \mathrm{C} 1$	2	2	Skip if IRQTMF = "1"
TQCT	3D - 22	2	2	Skip if IRQCTF $=$ "1"
TQSR	3D C3	2	2	Skip if IRQSRF = "1"
RQXD	3D $\cdot 24$	2	2	IRQXDF < "0"
RQXU	3D $\cdot 25$	2	2	IRQXUF - "0"
RQXL	3D $\cdot 26$	2	2	IRQXLF ¢- "0"
RQDP	3D $\cdot 27$	2	2	IRQDPF <- "0"
RQTB	3D - 4	2	2	IRQTBF <- "0"
RQTM	3D - C5	2	2	IRQTMF \leftarrow "0"
RQCT	3D - C6	2	2	IRQCTF <- "0"
RQSR	3D \cdot C7	2	2	IRQSRF - "0"

Increment/Decrement Instructions

Mnemonic	Code	Bytes	Cycles	Description
INA	30	1	1	$A \leftarrow A+1$, Skip if $A=" 0$ "
INL	31	1	1	$L \ll L+1$, Skip if $L=" 0$ "
INH	32	1	1	$H \leftarrow H+1$, Skip if $\mathrm{H}=$ " 0 "
INM	33	1	1	$M \leftarrow M+1$, Skip if $M=$ " 0 "
DCA	34	1	1	$A \leftarrow A-1$, Skip if $A=$ " ${ }^{\prime \prime}$
DCL	35	1	1	$L \leftarrow L-1$, Skip if $L=$ " F "
DCH	36	1	1	$\mathrm{H} \leftarrow \mathrm{H}-1$, Skip if $\mathrm{H}=$ " F "
DCM	37	1	1	$\mathbf{M} \leftarrow \mathrm{M}-1$, Skip if $\mathrm{M}=$ " ${ }^{\text {\% }}$ "
INMD mm	$12 . \mathrm{mm}$	2	2	$M d \leftarrow M d+1$, Skip if $M d=$ " 0 "
DCMD mm	$13 . \mathrm{mm}$	2	2	$M d \leftarrow M d-1$, Skip if $M d=$ " ${ }^{\text {\% }}$

Bit Handling Instructions, etc.

Mnemonic		Code	Bytes	Cycles	Description
TAB	n2	54-57	1	1	Skip if $\mathrm{A}(\mathrm{n} 2)=$ " 1 "
RAB	n2	64-67	1	1	A (n2) ↔ "0"
SAB	n2	74-77	1	1	A (n2) $\leftarrow 41 "$
TPB	n2	50-53	1	1	Skip if $\mathrm{P}(\mathrm{n} 2)=" 1$ "
RPB	n2	60-63	1	1	$\mathrm{P}(\mathrm{n} 2) \leftarrow$ "0"
SPB	n2	70-73	1	1	$\mathrm{P}(\mathrm{n} 2) \leftarrow " 1 "$
TMB	n2	58-5B	1	1	Skip if $M(n 2)=" 1 "$
RMB	n2	68-6B	1	1	$\mathrm{M}(\mathrm{n} 2) \leftarrow$ "0"
SMB	n2	78-7B	1	1	$\mathrm{M}(\mathrm{n} 2) \leftarrow$ "1"
TFB	n2	5C-5F	1	1	Skip if $F(n 2)=" 1 "$
RFB	n2	6C-6F	1	1	$\mathrm{F}(\mathrm{n} 2) \leftarrow{ }^{\text {c }} \mathrm{O}$
SFB	n2	7C-7F	1	1	$F(\mathrm{n} 2) \leftarrow$ "1"
TPBD	p, n2	3D - $00 \sim 3$	2	2	Skip if $\mathrm{Pp}(\mathrm{n} 2)=$ " 1 "
RPBD	p, n2	3D - p4~7	2	2	$\mathrm{Pp}(\mathrm{n} 2) \leftarrow " 0 "$
SPBD	p, n2	3D - P8~B	2	2	$\operatorname{Pp}(\mathrm{n} 2) \leftarrow " 1 "$
TC		09	1	1	Skip if $\mathrm{C}=$ " 1 "
RC		08	1	1	C ¢ "0"
SC		07	1	1	$\mathrm{C} \leftarrow{ }^{\text {c }}$

Arithmetic Instructions

Mnemonic	Code	Bytes	Cycles	Description
ADCS	01	1	1	$C, A \leftarrow C+A+M$, Skip if $C=" 1 "$
ADS	02	1	1	$A \leftarrow A+M$, Skip if $C y=" 1 "$
ADC	03	1	1	$C, A \leftarrow C+A+M$
AIS n	$3 \mathrm{E} \cdot 4 \mathrm{n}$	2	2	$A \leftarrow A+n$, Skip if $C y=" 1 "$
DAA	06	1	1	$A \leftarrow A+6$
DAS	OA	1	1	$A \leftarrow A+10$
AND	OD	1	1	$A \leftarrow A \wedge M$
OR	05	1	1	$A \leftarrow A \vee M$
EOR	04	1	1	$A \leftarrow A \forall M$
CMA	OB	1	1	$A \leftarrow \bar{A}$
CIA	0 C	1	1	$A \leftarrow \bar{A}+1$
RAL	OE	1	1	$C \leftarrow 3 \leftarrow 2 \leftarrow 1 \leftarrow 05$
RAR	OF	1	1	$C \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0$
CAM	16	1	1	Skip if $A=M$
CAI n	3E. On	2	2	Skip if $A=n$
CMI n	3E.1n	2	2	Skip if $M=n$
CLI n	3E.2n	2	2	Skip if $L=n$
CPI p, n	$17 \cdot \mathrm{pn}$	2	2	Skip if $\mathrm{Pp}=\mathrm{n}$

Branch Instructions, etc.

Mnemonic		Code	Bytes	Cycles	Description
JCP	a6	C0-FF	1	1	$\mathrm{PC} \leftarrow \mathrm{a} 6$
JA		1A	1	2	$P C \leftarrow(P C \leftarrow A)+1$
JM		1B	1	2	$\mathrm{PC} \leftarrow(\mathrm{M}(\mathrm{w}), \mathrm{A})$
JP	a12	$\begin{aligned} & 40-4 \mathrm{~F} \\ & 00^{-} \mathrm{FF} \end{aligned}$	2	2	PC $\leftarrow \mathrm{a} 12$
CAL	a12	$\begin{aligned} & \text { AO AF } \\ & 0_{0}-\mathrm{FF} \end{aligned}$	2	4	ST \leftarrow PC+2, PC ¢ - 12, SP $<-S P-4$
CZP	a	Ba	1	4	$\mathrm{ST} \leftarrow \mathrm{PC}+1, \mathrm{PC} \leftarrow 2 \mathrm{a}, \mathrm{SP} \leftarrow \mathrm{SP}-4$
LJP	a13	$\begin{aligned} & 3 F 3 F \\ & 00-1 F \\ & 00 \mathrm{FF} \end{aligned}$	3	4	$\mathrm{PC} \leftarrow \mathrm{a} 13$
LCAL	a13	$\begin{aligned} & 3 F 3 F \\ & 80-9 F \\ & 00 \mathrm{FF} \end{aligned}$	3	4	$\mathrm{ST} \leftarrow \mathrm{PC}+3, \mathrm{PC} \leftarrow \mathrm{a} 13, \mathrm{SP} \leftarrow \mathrm{SP}-4$
RT		1E	1	4	$\mathrm{PC} \leftarrow \mathrm{ST}, \mathrm{SP} \leftarrow \mathrm{SP}+4$
RTS		1F	1	4	$\mathrm{PC} \leftarrow \mathrm{ST}, \mathrm{SP} \leftarrow \mathrm{SP}+4$, then Skip

Counter Control Instructions, etc.

Mnemonic	Code	Bytes	Cycles	Description
LCTM	3E-51	2	2	CTR $\leftarrow M(w)$
LMCT	3E - 59	2	2	$M(w) \leftarrow C T$
ECT	3D - BB	2	2	CTF \leftarrow "1" (Counter Start)
DCT	3D - B7	2	2	CTF - "0" (Counter Stop)
TCT	3D - B3	2	2	Skip if CTF = "1"
LTMM	$3 \mathrm{E} \cdot 50$	2	3	TMR $\leftarrow M(2 w)$
LMTM	$3 \mathrm{E} \cdot 58$	2	3	$\mathrm{M}(2 \mathrm{w}) \leftarrow T M$
LSRM	3E-52	2	2	$S R \leftarrow M(w), S C \leftarrow 00 \quad S C:$ Shift Counter
LMSR	3E.5A	2	2	$M(w) \leftarrow S R$
ESR	3D - BA	2	2	SRF \leftarrow "1" (Shift Register Start)
DSR	3D - B6	2	2	SRF \leftarrow "0" (Shift Register Stop)
TSR	3D - B2	2	2	Skip if SRF $=$ " 1 "

CPU Control Instructions, etc.

Mnemonic	Code	Bytes	Cycles	Description
PUSH	1C	1	3	ST $\leftarrow C, A, H, L, S P \leftarrow S P-4$
POP	$1 D$	1	3	$C, A, H, L \leftarrow S T, S P \leftarrow S P+4$
HALT	$3 D \cdot B 8$	2	2	Halt CPU
STOP	$3 D \cdot B 9$	2	2	Stop CPU
NOP	00	1	1	No Operation

Explanations of Instruction Symbols

A	: Accumulator (4-bit)
H	: H register (4-bit)
L	: L register (4-bit)
F	: F register (4-bit)
M	: RAM word addressed by the H and L registers
Md	: RAM word addressed by second byte of an instruction code
M (w)	: Two RAM words addressed by the H and L register/H3-0 and L3-1 (8-bit)
Md (w)	: Two RAM words addressed by second byte of an instruction code (8-bit)
M (2w)	: Four RAM words addressed by the H and L register/H3-0 and L3-2 (16-bit)
ST	: Four RAM words (16-bit) allocated as a stack area
SP	: Stack pointer (8-bit)
PC	: Program counter
P	: Port specified by the L register (4-bit)
Pp	: Port specified by 4 high-order bits of second byte of an instruction code (4-bit)
CTR	: 8-Bit counter/register
CT	: 8-Bit programmable counter
CTF	: Programmable counter start flag
TMR	: 16-Bit timer/register
TM	: 16-Bit programmable timer
SR	: 8-Bit shift register
SRF	: Shift register start flag
(X, Y)	: ROM address data specified by a11-4 as X and a3-0 as Y (12-bit)
T (X, Y)	: ROM table data specified by a11-4 as X and a3-0 as Y (8-bit)
n	: Immediate data (4-bit)
nn	: Immediate data (8-bit)
n2	: Two low-order bits of an instruction code
(n2)	: Bit specified by the two low-order bits of an instruction code
a	: ROM address data
aX	: ROM address data (X-bit)
mm	: RAM address data (8-bit)
C	: Carry flag
Cy	: Flag indicating a carry in a calculation result

