- Low Supply-Voltage Range, 1.8 V to 3.6 V
- Ultralow Power Consumption:
 - Active Mode: 160 µA at 1 MHz, 2.2 V
 - Standby Mode: 0.9 μA
 - Off Mode (RAM Retention) : 0.1 μ A
- Five Power-Saving Modes
- Wake-Up From Standby Mode in Less Than 6 μs
- 16-Bit RISC Architecture,
 125-ns Instruction Cycle Time
- 16-Bit Timer_B With Three Capture/Compare-With-Shadow Registers
- 16-Bit Timer_A With Three Capture/Compare Registers

- On-Chip Comparator
- Serial Communication Interface (USART), Software Selects Asynchronous UART or Synchronous SPI
- Programmable Code Protection With Security Fuse
- Family Members Include:
 - MSP430C1331: 8KB ROM, 256B RAM
 - MSP430C1351: 16KB ROM, 512B RAM
- Available in 64-Pin Quad Flat Pack (QFP)
- Emulation: Use MSP430F13xIPM
- For Complete Module Descriptions, See the MSP430x1xx Family User's Guide, Literature Number SLAU049

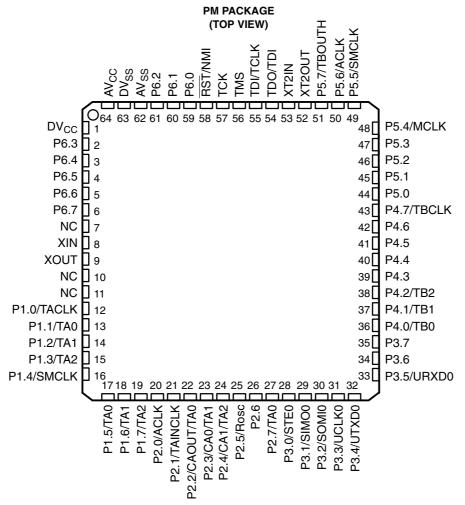
description

The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 μ s.

The MSP430C13x1 is a microcontroller configuration with two built-in 16-bit timers, one universal serial synchronous/asynchronous communication interfaces (USART), and 48 I/O pins.

Typical applications include sensor systems that capture analog signals, convert them to digital values, and process and transmit the data to a host system. The timers make the configurations ideal for industrial control applications, hand-held meters, etc.

AVAILABLE OPTIONS


	PACKAGED DEVICES
T _A	PLASTIC 64-PIN QFP (PM)
–40°C to 85°C	MSP430C1331IPM MSP430C1351IPM

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


pin designation, MSP430C1331, MSP430C1351

NC - No internal connection

functional block diagrams

MSP430C13x1

Terminal Functions

TERMINAL			DECORPTION	
NAME	NO.	I/O	DESCRIPTION	
AV _{CC}	64		Supply voltage, positive terminal. AV _{CC} and DV _{CC} are internally connected together.	
AV _{SS}	62		Supply voltage, negative terminal. AV _{SS} and DV _{SS} are internally connected together.	
DV_{CC}	1		Supply voltage, positive terminal. AV _{CC} and DV _{CC} are internally connected together.	
DV_SS	63		Supply voltage, negative terminal. AV _{SS} and DV _{SS} are internally connected together.	
P1.0/TACLK	12	I/O	General-purpose digital I/O pin/Timer_A, clock signal TACLK input	
P1.1/TA0	13	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output	
P1.2/TA1	14	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output	
P1.3/TA2	15	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output	
P1.4/SMCLK	16	I/O	General-purpose digital I/O pin/SMCLK signal output	
P1.5/TA0	17	I/O	General-purpose digital I/O pin/Timer_A, compare: Out0 output	
P1.6/TA1	18	I/O	General-purpose digital I/O pin/Timer_A, compare: Out1 output	
P1.7/TA2	19	I/O	General-purpose digital I/O pin/Timer_A, compare: Out2 output	
P2.0/ACLK	20	I/O	General-purpose digital I/O pin/ACLK output	
P2.1/TAINCLK	21	I/O	General-purpose digital I/O pin/Timer_A, clock signal at INCLK	
P2.2/CAOUT/TA0	22	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI0B input/Comparator_A output	
P2.3/CA0/TA1	23	I/O	General-purpose digital I/O pin/Timer_A, compare: Out1 output/Comparator_A input	
P2.4/CA1/TA2	24	I/O	General-purpose digital I/O pin/Timer_A, compare: Out2 output/Comparator_A input	
P2.5/R _{OSC}	25	I/O	General-purpose digital I/O pin/input for external resistor defining the DCO nominal frequency	
P2.6	26	I/O	General-purpose digital I/O pin	
P2.7/TA0	27	I/O	General-purpose digital I/O pin/Timer_A, compare: Out0 output	
P3.0/STE0	28	I/O	General-purpose digital I/O pin/slave transmit enable – USART0/SPI mode	

Terminal Functions (Continued)

TERMINA	AL		
NAME	NO.	1/0	DESCRIPTION
P3.1/SIMO0	29	I/O	General-purpose digital I/O pin/slave in/master out of USART0/SPI mode
P3.2/SOMI0	30	I/O	General-purpose digital I/O pin/slave out/master in of USART0/SPI mode
P3.3/UCLK0	31	I/O	General-purpose digital I/O pin/external clock input – USART0/UART or SPI mode, clock output – USART0/SPI mode
P3.4/UTXD0	32	I/O	General-purpose digital I/O pin/transmit data out – USART0/UART mode
P3.5/URXD0	33	I/O	General-purpose digital I/O pin/receive data in – USART0/UART mode
P3.6	34	I/O	General-purpose digital I/O pin
P3.7	35	I/O	General-purpose digital I/O pin
P4.0/TB0	36	I/O	General-purpose digital I/O pin/Timer_B, capture: CCI0A/B input, compare: Out0 output
P4.1/TB1	37	I/O	General-purpose digital I/O pin/Timer_B, capture: CCI1A/B input, compare: Out0 output
P4.2/TB2	38	I/O	General-purpose digital I/O pin/Timer_B, capture: CCI2A/B input, compare: Out0 output
P4.3	39	I/O	General-purpose digital I/O pin
P4.4	40	I/O	General-purpose digital I/O pin
P4.5	41	I/O	General-purpose digital I/O pin
P4.6	42	I/O	General-purpose digital I/O pin
P4.7/TBCLK	43	I/O	General-purpose digital I/O pin/Timer_B, clock signal TBCLK input
P5.0	44	I/O	General-purpose digital I/O pin
P5.1	45	I/O	General-purpose digital I/O pin
P5.2	46	1/0	General-purpose digital I/O pin
P5.3	47	I/O	General-purpose digital I/O pin
P5.4/MCLK	48	I/O	General-purpose digital I/O pin/main system clock MCLK output
P5.5/SMCLK	49	I/O	General-purpose digital I/O pin/submain system clock SMCLK output
P5.6/ACLK	50	I/O	General-purpose digital I/O pin/auxiliary clock ACLK output
P5.7/TBOUTH	51	I/O	General-purpose digital I/O pin/switch all PWM digital output ports to high impedance – Timer_B7 TB0 to TB2
P6.0	59	I/O	General-purpose digital I/O pin
P6.1	60	I/O	General-purpose digital I/O pin
P6.2	61	I/O	General-purpose digital I/O pin
P6.3	2	I/O	General-purpose digital I/O pin
P6.4	3	I/O	General-purpose digital I/O pin
P6.5	4	I/O	General-purpose digital I/O pin
P6.6	5	I/O	General-purpose digital I/O pin
P6.7	6	I/O	General-purpose digital I/O pin
RST/NMI	58	1	Reset input, nonmaskable interrupt input port
TCK	57	ı	Test clock. TCK is the clock input port for device programming test.
TDI/TCLK	55	I	Test data input or test clock input. TDI is used as a data input port. The device protection fuse is connected to TDI.
TDO/TDI	54	I/O	Test data output port. TDO/TDI data output
TMS	56	ı	Test mode select. TMS is used as an input port for device test.
NC	7, 10, 11		No internal connection
XIN	8	ı	Input port for crystal oscillator XT1. Standard or watch crystals can be connected.
XOUT	9	0	Output terminal of crystal oscillator XT1
XT2IN	53	I	Input port for crystal oscillator XT2. Only standard crystals can be connected.
XT2OUT	52	0	Output terminal of crystal oscillator XT2

short-form description

CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

instruction set

The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; Table 2 lists the address modes.

Table 1. Instruction Word Formats

Dual operands, source-destination	e.g., ADD R4,R5	R4 + R5> R5
Single operands, destination only	e.g., CALL R8	PC>(TOS), R8> PC
Relative jump, un/conditional	e.g., JNE	Jump-on-equal bit = 0

Table 2. Address Mode Descriptions

ADDRESS MODE	s	D	SYNTAX	EXAMPLE	OPERATION
Register	•	•	MOV Rs,Rd	MOV R10,R11	R10> R11
Indexed	•	•	MOV X(Rn),Y(Rm)	MOV 2(R5),6(R6)	M(2+R5)> M(6+R6)
Symbolic (PC relative)	•	•	MOV EDE,TONI		M(EDE)> M(TONI)
Absolute	•	•	MOV &MEM,&TCDAT		M(MEM)> M(TCDAT)
Indirect	•		MOV @Rn,Y(Rm)	MOV @R10,Tab(R6)	M(R10)> M(Tab+R6)
Indirect autoincrement	•		MOV @Rn+,Rm	MOV @R10+,R11	M(R10)> R11 R10 + 2> R10
Immediate	•		MOV #X,TONI	MOV #45,TONI	#45> M(TONI)

NOTE: S = source D = destination

operating modes

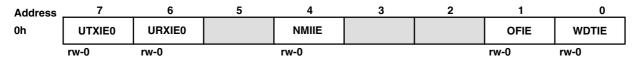
The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

The following six operating modes can be configured by software:

- Active mode AM
 - All clocks are active.
- Low-power mode 0 (LPM0)
 - CPU is disabled.
 - ACLK and SMCLK remain active. MCLK is disabled.
- Low-power mode 1 (LPM1)
 - CPU is disabled.
 - ACLK and SMCLK remain active. MCLK is disabled.
 - DCO's dc generator is disabled if DCO not used in active mode.
- Low-power mode 2 (LPM2)
 - CPU is disabled.
 - MCLK and SMCLK are disabled.
 - DCO's dc generator remains enabled.
 - ACLK remains active
- Low-power mode 3 (LPM3)
 - CPU is disabled.
 - MCLK and SMCLK are disabled.
 - DCO's dc generator is disabled.
 - ACLK remains active.
- Low-power mode 4 (LPM4)
 - CPU is disabled.
 - ACLK is disabled.
 - MCLK and SMCLK are disabled.
 - DCO's dc generator is disabled.
 - Crystal oscillator is stopped.

interrupt vector addresses

The interrupt vectors and the power-up starting address are located in the address range 0FFFFh to 0FFE0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.


INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-up External reset Watchdog	WDTIFG (see Note 1)	Reset	0FFFEh	15, highest
NMI Oscillator fault	NMIIFG (see Notes 1 & 4) OFIFG (see Notes 1 & 4)	(Non)maskable (Non)maskable	0FFFCh	14
Timer_B3	TBCCR0 CCIFG (see Note 2)	Maskable	0FFFAh	13
Timer_B3	TBCCR1 and TBCCR2 CCIFGs, TBIFG (see Notes 1 & 2)	Maskable	0FFF8h	12
Comparator_A	CAIFG	Maskable	0FFF6h	11
Watchdog timer	WDTIFG	Maskable	0FFF4h	10
USART0 receive	URXIFG0	Maskable	0FFF2h	9
USART0 transmit	UTXIFG0	Maskable	0FFF0h	8
			0FFEEh	7
Timer_A3	TACCR0 CCIFG (see Note 2)	Maskable	0FFECh	6
Timer_A3	TACCR1 and TACCR2 CCIFGs, TAIFG (see Notes 1 & 2)	Maskable	OFFEAh	5
I/O port P1 (eight flags)	P1IFG.0 to P1IFG.7 (see Notes 1 & 2)	Maskable	0FFE8h	4
			0FFE6h	3
			0FFE4h	2
I/O port P2 (eight flags)	P2IFG.0 to P2IFG.7 (see Notes 1 & 2)	Maskable	0FFE2h	1
			0FFE0h	0, lowest

- NOTES: 1. Multiple source flags
 - 2. Interrupt flags are located in the module.
 - 3. Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event.
 - 4. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable can not disable it.

special function registers

Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access.

interrupt enable 1 and 2

WDTIE: Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog

Timer is configured in interval timer mode.

OFIE: Oscillator-fault-interrupt enable
NMIIE: Nonmaskable-interrupt enable

URXIE0: USART0: UART and SPI receive-interrupt enable UTXIE0: USART0: UART and SPI transmit-interrupt enable

interrupt flag register 1 and 2

WDTIFG: Set on Watchdog Timer overflow (in watchdog mode) or security key violation. Reset on V_{CC}

power-up or a reset condition at RST/NMI pin in reset mode.

OFIFG: Flag set on oscillator fault NMIIFG: Set via RST/NMI pin

URXIFG0: USART0: UART and SPI receive flag UTXIFG0: USART0: UART and SPI transmit flag

Address	7	6	5	4	3	2	1	0
03h								

module enable registers 1 and 2

Address	7	6	5	4	3	2	1	0
04h	UTXE0	URXE0 USPIE0						
		_	-	-				

rw-0 rw-0

URXE0: USART0: UART receive enable UTXE0: USART0: UART transmit enable

USPIE0: USART0: SPI (synchronous peripheral interface) transmit and receive enable

Address 7 6 5 4 3 2 1 0 05h

Legend: rw:

Bit Can Be Read and Written

rw-0,1: rw-(0,1): Bit Can Be Read and Written. It Is Reset or Set by PUC. Bit Can Be Read and Written. It Is Reset or Set by POR.

SFR Bit Not Present in Device

memory organization

		MSP430C1331	MSP430C1351
Memory	Size	8KB	16KB
Interrupt vector	ROM	0FFFFh – 0FFE0h	0FFFFh – 0FFE0h
Code memory	ROM	0FFFFh – 0E000h	0FFFFh – 0C000h
RAM	Size	256 Byte 02FFh – 0200h	512 Byte 03FFh – 0200h
Peripherals	16-bit	01FFh – 0100h	01FFh – 0100h
	8-bit	0FFh – 010h	0FFh – 010h
	8-bit SFR	0Fh – 00h	0Fh – 00h

peripherals

Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. For complete module descriptions, see the *MSP430x1xx Family User's Guide*, literature number SLAU049.

digital I/O

There are six 8-bit I/O ports implemented—ports P1 through P6:

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.
- Read/write access to port-control registers is supported by all instructions.

oscillator and system clock

The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low-power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The basic clock module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.
- Main clock (MCLK), the system clock used by the CPU.
- Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.

watchdog timer (WDT)

The primary function of WDT module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

USARTO

The MSP430C13x1 devices have one hardware universal synchronous/asynchronous receive transmit (USART0) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels.

Comparator_A

The primary function of the comparator A module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals.

Timer A3

Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

	TIMER_A3 SIGNAL CONNECTIONS						
INPUT PIN NUMBER	DEVICE INPUT SIGNAL	MODULE INPUT NAME	MODULE BLOCK	MODULE OUTPUT SIGNAL	OUTPUT PIN NUMBER		
12 - P1.0	TACLK	TACLK					
	ACLK	ACLK		NA			
	SMCLK	SMCLK	Timer				
21 - P2.1	TAINCLK	INCLK	1				
13 - P1.1	TA0	CCI0A			13 - P1.1		
22 - P2.2	TA0	CCI0B	0000	TA0	17 - P1.5		
	DV _{SS}	GND	CCR0		27 - P2.7		
	DV _{CC}	V _{CC}	1				
14 - P1.2	TA1	CCI1A			14 - P1.2		
	CAOUT (internal)	CCI1B	0004		18 - P1.6		
	DV _{SS}	GND	CCR1	TA1	23 - P2.3		
	DV _{CC}	V _{CC}	1				
15 - P1.3	TA2	CCI2A			15 - P1.3		
	ACLK (internal)	CCI2B]	TA2	19 - P1.7		
	DV _{SS}	GND	CCR2		24 - P2.4		
	DV _{CC}	V _{CC}	1				

Timer_B3

Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

	TIMER_B3 SIGNAL CONNECTIONS							
INPUT PIN NUMBER	DEVICE INPUT SIGNAL	MODULE INPUT NAME	MODULE BLOCK	MODULE OUTPUT SIGNAL	OUTPUT PIN NUMBER			
43 - P4.7	TBCLK	TBCLK						
	ACLK	ACLK		NA				
	SMCLK	SMCLK	Timer					
43 - P4.7	TBCLK	INCLK						
36 - P4.0	TB0	CCI0A		TB0	36 - P4.0			
36 - P4.0	TB0	CCI0B]					
	DV_SS	GND	CCR0					
	DV _{CC}	V _{CC}	1					
37 - P4.1	TB1	CCI1A			37 - P4.1			
37 - P4.1	TB1	CCI1B	0004	TD4				
	DV _{SS}	GND	CCR1	TB1				
	DV _{CC}	V _{CC}						
38 - P4.2	TB2	CCI2A			38 - P4.2			
38 - P4.2	TB2	CCI2B	0000	TB2				
	DV _{SS}	GND	CCR2					
	DV _{CC}	V _{CC}]					

peripheral file map

PERIPHERALS WITH WORD ACCESS					
Watchdog	Watchdog Timer control	WDTCTL	0120h		
Timer_B3	Timer_B interrupt vector	TBIV	011Eh		
	Timer_B control	TBCTL	0180h		
	Capture/compare control 0	TBCCTL0	0182h		
	Capture/compare control 1	TBCCTL1	0184h		
	Capture/compare control 2	TBCCTL2	0186h		
	Reserved		0188h		
	Reserved		018Ah		
	Reserved		018Ch		
	Reserved		018Eh		
	Timer_B register	TBR	0190h		
	Capture/compare register 0	TBCCR0	0192h		
	Capture/compare register 1	TBCCR1	0194h		
	Capture/compare register 2	TBCCR2	0196h		
	Reserved		0198h		
	Reserved		019Ah		
	Reserved		019Ch		
	Reserved		019Eh		
Timer_A3	Timer_A interrupt vector	TAIV	012Eh		
	Timer_A control	TACTL	0160h		
	Capture/compare control 0	TACCTL0	0162h		
	Capture/compare control 1	TACCTL1	0164h		
	Capture/compare control 2	TACCTL2	0166h		
	Reserved		0168h		
	Reserved		016Ah		
	Reserved		016Ch		
	Reserved		016Eh		
	Timer_A register	TAR	0170h		
	Capture/compare register 0	TACCR0	0172h		
	Capture/compare register 1	TACCR1	0174h		
	Capture/compare register 2	TACCR2	0176h		
	Reserved		0178h		
	Reserved		017Ah		
	Reserved		017Ch		
	Reserved		017Eh		
	PERIPHERALS WITH BYTE A	ACCESS			
USART0	Transmit buffer	U0TXBUF	077h		
	Receive buffer	U0RXBUF	076h		
	Baud rate	U0BR1	075h		
	Baud rate	U0BR0	074h		
	Modulation control	UOMCTL	073h		
	Receive control	UORCTL	072h		
	Transmit control	UOTCTL	071h		
	USART control	UOCTL	070h		

peripheral file map (continued)

	PERIPHERALS WITH BYTE ACCESS (CONTIN	IUED)	
Comparator_A	Comparator_A port disable	CAPD	05Bh
	Comparator_A control2	CACTL2	05Ah
	Comparator_A control1	CACTL1	059h
Basic Clock	Basic clock system control2	BCSCTL2	058h
	Basic clock system control1	BCSCTL1	057h
	DCO clock frequency control	DCOCTL	056h
Port P6	Port P6 selection	P6SEL	037h
	Port P6 direction	P6DIR	036h
	Port P6 output	P6OUT	035h
	Port P6 input	P6IN	034h
Port P5	Port P5 selection	P5SEL	033h
	Port P5 direction	P5DIR	032h
	Port P5 output	P5OUT	031h
	Port P5 input	P5IN	030h
Port P4	Port P4 selection	P4SEL	01Fh
	Port P4 direction	P4DIR	01Eh
	Port P4 output	P4OUT	01Dh
	Port P4 input	P4IN	01Ch
Port P3	Port P3 selection	P3SEL	01Bh
	Port P3 direction	P3DIR	01Ah
	Port P3 output	P3OUT	019h
	Port P3 input	P3IN	018h
Port P2	Port P2 selection	P2SEL	02Eh
	Port P2 interrupt enable	P2IE	02Dh
	Port P2 interrupt-edge select	P2IES	02Ch
	Port P2 interrupt flag	P2IFG	02Bh
	Port P2 direction	P2DIR	02Ah
	Port P2 output	P2OUT	029h
	Port P2 input	P2IN	028h
Port P1	Port P1 selection	P1SEL	026h
	Port P1 interrupt enable	P1IE	025h
	Port P1 interrupt-edge select	P1IES	024h
	Port P1 interrupt flag	P1IFG	023h
	Port P1 direction	P1DIR	022h
	Port P1 output	P1OUT	021h
	Port P1 input	P1IN	020h
Special Functions	SFR module enable 2	ME2	005h
	SFR module enable 1	ME1	004h
	SFR interrupt flag 2	IFG2	003h
	SFR interrupt flag 1	IFG1	002h
	SFR interrupt enable 2	IE2	001h
	SFR interrupt enable 1	IE1	000h

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Voltage applied at V _{CC} to V _{SS}	0.3 V to + 4.1 V
Voltage applied to any pin (see Note)	0.3 V to V _{CC} +0.3 V
Diode current at any device terminal	±2 mA
Storage temperature (unprogrammed device)	–55°C to 150°C
Storage temperature (programmed device)	–40°C to 85°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

PARAME	PARAMETER					UNITS
Supply voltage during program execution, V_{CC} (AV	$_{CC} = DV_{CC} = V_{CC}$		1.8		3.6	V
Supply voltage, V _{SS} (AV _{SS} = DV _{SS} = V _{SS})			0.0		0.0	V
Operating free-air temperature range, TA			-40		85	°C
	LF selected, XTS=0	Watch crystal		32768		Hz
LFXT1 crystal frequency, f _(LFXT1) (see Notes 1 and 2)	XT1 selected, XTS=1	Ceramic resonator	450		8000	kHz
(300 140103 1 4110 2)	XT1 selected, XTS=1	Crystal	1000		8000	kHz
VTO 116		Ceramic resonator	450		8000	
XT2 crystal frequency, f _(XT2)	Crystal	1000		8000	kHz	
		V _{CC} = 1.8 V	DC		4.15	
Processor frequency (signal MCLK), f _(System)		V _{CC} = 3.6 V	DC		8	MHz

NOTES: 1. In LF mode, the LFXT1 oscillator requires a watch crystal and the LFXT1 oscillator requires a 5.1-M Ω resistor from XOUT to V_{SS} when V_{CC} < 2.5 V. In XT1 mode, the LFXT1. and XT2 oscillators accept a ceramic resonator or a 4-MHz crystal frequency at V_{CC} ≥ 2.2 V. In XT1 mode, the LFXT1 and XT2 oscillators accept a ceramic resonator or an 8-MHz crystal frequency at V_{CC} ≥ 2.8 V.

2. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, FXT1 accepts a ceramic resonator or a crystal.

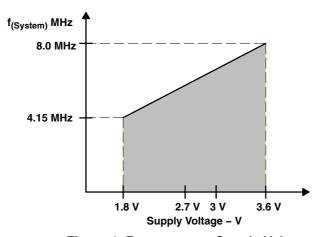


Figure 1. Frequency vs Supply Voltage

NOTE: All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse.

supply current into AV_{CC} + DV_{CC} excluding external current

	PARAMETER	TEST COND	ITIONS	MIN	TYP	MAX	UNIT
	Active mode, (see Note 1) $f_{(MCLK)} = f_{(SMCLK)} = 1 \text{ MHz},$	T _A = -40°C to 85°C	V _{CC} = 2.2 V		160	200	uА
	$f_{(ACLK)} = 32,768 \text{ Hz}, \text{ XTS=0, SELM=(0,1)}$, A	$V_{CC} = 3 V$		240	300	μ
I _(AM)	Active mode, (see Note 1) $f_{(MCLK)} = f_{(SMCLK)} = 4 096 \text{ Hz},$	$T_{\Delta} = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	V _{CC} = 2.2 V		2.5	7	μΑ
	f _(ACLK) = 4,096 Hz XTS=0, SELM=(0,1), XTS=0, SELM=3	1A = -40°C 10 85°C	V _{CC} = 3 V		2.5	7	μΑ
	Low-power mode, (LPM0) (see Note 1)	T _A = -40°C to 85°C	$V_{CC} = 2.2 \text{ V}$		32	45	μΑ
I _(LPM0)	Low-power mode, (LFINIO) (see Note 1)	1A = -40 C to 65 C	V _{CC} = 3 V		55	70	μΑ
I _(LPM2)	Low-power mode, (LPM2), f(MCLK) = f (SMCLK) = 0 MHz,	$T_{\Delta} = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	V _{CC} = 2.2 V		11	14	μΑ
(LPM2)	f(ACLK) = 32.768 Hz, SCG0 = 0	1 _A = -40 0 to 65 0	V _{CC} = 3 V		17	22	μΑ
	Low-power mode, (LPM3) $f_{(MCLK)} = f_{(SMCLK)} = 0 \text{ MHz},$	T _A = -40°C	V _{CC} = 2.2 V		0.8	1.5	
		T _A = 25°C			0.9	1.5	μА
		T _A = 85°C			1.6	2.8	
I _(LPM3)	$f_{(ACLK)} = 32,768 \text{ Hz}, SCG0 = 1$	$T_A = -40^{\circ}C$			1.8	2.2	
	(see Note 2)	T _A = 25°C	V _{CC} = 3 V		1.8	2.2	μА
		T _A = 85°C			2.3	3.9	
		$T_A = -40^{\circ}C$			0.1	0.5	
		T _A = 25°C	V _{CC} = 2.2 V		0.1	0.5	μА
١.	Low-power mode, (LPM4) $f_{(MCLK)} = 0 \text{ MHz}, f_{(SMCLK)} = 0 \text{ MHz},$ $f_{(ACLK)} = 0 \text{ Hz}, SCG0 = 1$	$T_A = 85^{\circ}C$			0.8	2.5	
I _(LPM4)		$T_A = -40^{\circ}C$			0.1	0.5	
		$T_A = 25^{\circ}C$	V _{CC} = 3 V		0.1	0.5	μΑ
		T _A = 85°C			0.8	2.5	

NOTES: 1. Timer_B is clocked by f(DCOCLK) = 1 MHz. All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current.

Current consumption of active mode versus system frequency

 $I(AM) = I(AM) [1 MHz] \times f(System) [MHz]$

Current consumption of active mode versus supply voltage

$$I_{(AM)} = I_{(AM)[3\ V]} + 175\ \mu\text{A/V} \times (V_{CC} - 3\ V)$$

^{2.} Timer_B is clocked by f(ACLK) = 32,768 Hz. All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current. The current consumption in LPM2 and LPM3 are measured with ACLK selected.

electrical characteristics over recommended operating free-air temperature (unless otherwise noted)

Schmitt-trigger inputs - Ports P1, P2, P3, P4, P5, and P6

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
l.,	Desirius asias in authoresheld valence	$V_{CC} = 2.2 \text{ V}$	1.1	1.5	V
V _{IT+}	V _{IT+} Positive-going input threshold voltage	V _{CC} = 3 V	1.5	1.9	V
.,	No notive mainer innertative should valle as	$V_{CC} = 2.2 \text{ V}$	0.4	0.9	V
V _{IT} –	V _{IT} Negative-going input threshold voltage	V _{CC} = 3 V	0.90	1.3] V
V _{hys}	Input voltage hystoresis (V V)	V _{CC} = 2.2 V	0.3	1.1	V
	Input voltage hysteresis ($V_{IT+} - V_{IT-}$)	V _{CC} = 3 V	0.4	1]

standard inputs - RST/NMI, JTAG (TCK, TMS, TDI/TCLK, TDO/TDI)

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
V_{IL}	Low-level input voltage	V _{CC} = 2.2 V / 3 V	V_{SS}	V _{SS} +0.6	V
V_{IH}	High-level input voltage	$V_{CC} = 2.2 \text{ V} / 3 \text{ V}$	0.8×V _{CC}	V_{CC}	٧

input frequency - Ports P1, P2, P3, P4, P5, and P6

PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
f _(IN)		$V_{CC} = 2.2 \text{ V}$			8	MHz
	$t_{(h)} = t_{(L)}$	$V_{CC} = 3 V$			10	IVI⊓Z

capture timing - Timer_A3 (TA0, TA1, TA2), Timer_B3 (TB0, TB1, TB2)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Ports P2, P4: t(int) External trigger signal for the interrupt flag (see Notes 1 and 2)	$V_{CC} = 2.2 \text{ V/3 V}$	1.5			Cycle
I +		V _{CC} = 2.2 V	62			20
		V _{CC} = 3 V	50			ns

NOTES: 1. The external signal sets the interrupt flag every time t_(int) is met. It may be set even with trigger signals shorter than t_(int). The conditions to set the flag must be met independently of this timing constraint. t(int) is defined in MCLK cycles.

2. The external signal needs additional timing because of the maximum input-frequency constraint.

external interrupt timing

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _(int)	Ports P1, P2: External trigger signal for the interrupt flag (see Notes 1 and 2)	$V_{CC} = 2.2 \text{ V/3 V}$	1.5			Cycle
		V _{CC} = 2.2 V	62			20
		V _{CC} = 3 V	50			ns

NOTES: 1. The external signal sets the interrupt flag every time $t_{(int)}$ is met. It may be set even with trigger signals shorter than $t_{(int)}$. The conditions to set the flag must be met independently of this timing constraint. t(int) is defined in MCLK cycles.

2. The external signal needs additional timing because of the maximum input-frequency constraint.

leakage current (see Note 1)

PARAMETER			TEST CONDITION	S	MIN	TYP	MAX	UNIT
I _{lkg(P1.x)}	Leakage	Port P1	V _(P1.x) (see Note 2)	V 00V/0V			±50	4
I _{lkg(P2.x)}	current	Port P2	V _(P2.3) V _(P2.4) (see Note 2)	$V_{CC} = 2.2 \text{ V/3 V}$			±50	nA

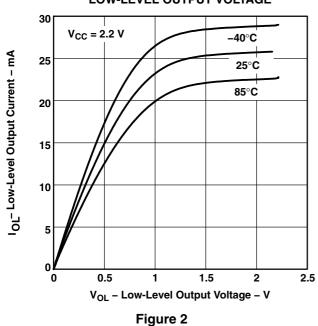
NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.

2. The port pin must be selected as input and there must be no optional pullup or pulldown resistor.

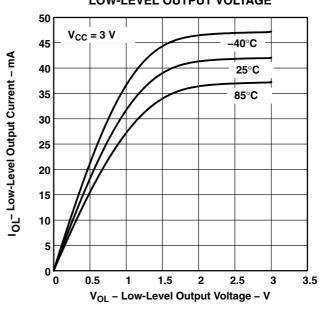
outputs - Ports P1, P2, P3, P4, P5, and P6

	PARAMETER	TEST	CONDITIONS		MIN	TYP MAX	UNIT
		$I_{OH(max)} = -1.5 \text{ mA},$	$V_{CC} = 2.2 \text{ V},$	See Note 1	V _{CC} -0.25	V_{CC}	
V _{OH} High-	High lavel autout valle ee	$I_{OH(max)} = -6 \text{ mA},$	$V_{CC} = 2.2 \text{ V},$	See Note 2	V _{CC} -0.6	V _{CC}	V
	High-level output voltage	$I_{OH(max)} = -1.5 \text{ mA},$	$V_{CC} = 3 V$,	See Note 1	V _{CC} -0.25	V _{CC}	V
		$I_{OH(max)} = -6 \text{ mA},$	$V_{CC} = 3 V$,	See Note 2	V _{CC} -0.6	V _{CC}	
		$I_{OL(max)} = 1.5 \text{ mA},$	$V_{CC} = 2.2 \text{ V},$	See Note 1	V_{SS}	V _{SS} +0.25	
\ ,	Lave laved and ordered rather	$I_{OL(max)} = 6 \text{ mA},$	$V_{CC} = 2.2 \text{ V},$	See Note 2	V_{SS}	V _{SS} +0.6	V
V _{OL}	Low-level output voltage	$I_{OL(max)} = 1.5 \text{ mA},$	$V_{CC} = 3 V$,	See Note 1	V_{SS}	V _{SS} +0.25	٧
		$I_{OL(max)} = 6 \text{ mA},$	$V_{CC} = 3 V$,	See Note 2	V_{SS}	V _{SS} +0.6	

- NOTES: 1. The maximum total current, $I_{OH(max)}$ and $I_{OL(max)}$, for all outputs combined, should not exceed ± 12 mA to satisfy the maximum specified voltage drop.
 - 2. The maximum total current, I_{OH(max)} and I_{OL(max)}, for all outputs combined, should not exceed ±48 mA to satisfy the maximum specified voltage drop.

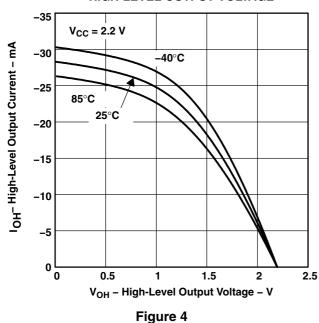

output frequency

	PARAMETER	TES ⁻	TEST CONDITIONS		TYP	MAX	UNIT
f _{TAx} , f _{TBx}	TA02, TB02 Internal clock source, SMCLK signal applied (see Note 1)	C _L = 20 pF	C _L = 20 pF			f _{System}	N 41.1-
f _{ACLK} , f _{MCLK} , f _{SMCLK}	P5.6/ACLK, P5.4/MCLK, P5.5/SMCLK	C _L = 20 pF	L = 20 pF			f _{System}	MHz
		P2.0/ACLK C _L = 20 pF, V _{CC} = 2.2 V / 3 V	$f_{ACLK} = f_{LFXT1} = f_{XT1}$	40%		60%	
			f _{ACLK} = f _{LFXT1} = f _{LF}	30%		70%	
			f _{ACLK} = f _{LFXT1/n}		50%		
			$f_{SMCLK} = f_{LFXT1} = f_{XT1}$	40%		60%	
t _{Xdc}	Duty cycle of output frequency	D4 4/CMCLK	f _{SMCLK} = f _{LFXT1} = f _{LF}	35%		65%	
		P1.4/SMCLK, C _L = 20 pF, V _{CC} = 2.2 V / 3 V	f _{SMCLK} = f _{LFXT1/n}	50%– 15 ns	50%	50%– 15 ns	
		00 170	f _{SMCLK} = f _{DCOCLK}	50%– 15 ns	50%	50%– 15 ns	


NOTE 1: The limits of the system clock MCLK has to be met; the system (MCLK) frequency should not exceed the limits. MCLK and SMCLK frequencies can be different.

outputs - Ports P1, P2, P3, P4, P5, and P6 (continued)

TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE



TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE

TYPICAL HIGH-LEVEL OUTPUT CURRENT

vs HIGH-LEVEL OUTPUT VOLTAGE

TYPICAL HIGH-LEVEL OUTPUT CURRENT vs

vs HIGH-LEVEL OUTPUT VOLTAGE

Figure 3

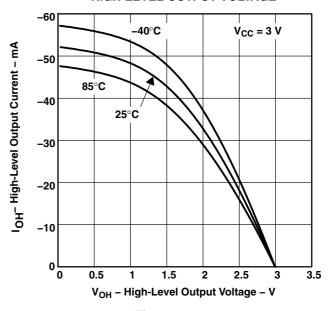


Figure 5

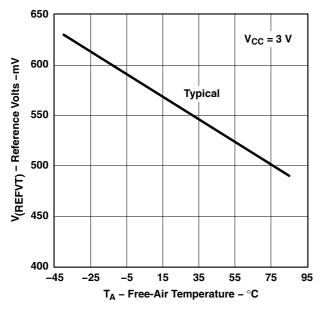
wake-up LPM3

	PARAMETER	TEST	MIN	TYP	MAX	UNIT	
t _(LPM3)		f = 1 MHz	V _{CC} = 2.2 V/3 V			6	
	Delay time	f = 2 MHz				6	μs
		f = 3 MHz				6	

RAM

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VRAMh	CPU HALTED (see Note 1)	1.6	•		V

NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution should take place during this supply voltage condition.


Comparator_A (see Note 1)

	PARAMETER	TEST CONDITION	IS	MIN	TYP	MAX	UNIT
		040N 4 0400FL 0 040FF 0	V _{CC} = 2.2 V		30	47	
I _(DD)		CAON=1, CARSEL=0, CAREF=0	V _{CC} = 3 V		55	74	μΑ
		CAON=1, CARSEL=0,	V _{CC} = 2.2 V		40	57	
(Refladder/Re	fdiode)	CAREF=1/2/3, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2	V _{CC} = 3 V		60	87	μΑ
V _(IC)	Common-mode input voltage	CAON =1	V _{CC} = 2.2 V/3 V	0		V _{CC} -1	٧
V _(Ref025)	Voltage at 0.25 V _{CC} node	PCA0=1, CARSEL=1, CAREF=1, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2	V _{CC} = 2.2 V/3 V	0.23	0.24	0.25	
V _(Ref050)	Voltage at 0.5V _{CC} node	PCA0=1, CARSEL=1, CAREF=2, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2	V _{CC} = 2.2 V/3 V	0.47	0.48	0.5	
		PCA0=1, CARSEL=1, CAREF=3,	V _{CC} = 2.2 V	390	480	540	
V _(RefVT)	(see Figure 6 and Figure 7)	no load at P2.3/CA0/TA1 and P2.4/CA1/TA2 T _A = 85°C	V _{CC} = 3 V	400	490	550	mV
V _(offset)	Offset voltage	See Note 2	V _{CC} = 2.2 V/3 V	-30		30	mV
V _{hys}	Input hysteresis	CAON=1	$V_{CC} = 2.2 \text{ V/3 V}$	0	0.7	1.4	mV
		T _A = 25°C, Overdrive 10 mV,	V _{CC} = 2.2 V	130	210	300	
		Without filter: CAF=0	V _{CC} = 3 V	80	150	240	ns
t(response LH)		T _A = 25°C, Overdrive 10 mV,	V _{CC} = 2.2 V	1.4	1.9	3.4	
		With filter: CAF=1	V _{CC} = 3 V	0.9	1.5	2.6	μs
		T _A = 25°C, Overdrive 10 mV,	V _{CC} = 2.2 V	130	210	300	
		Without filter: CAF=0	V _{CC} = 3 V	80	150	240	ns
t(response HL)		T _A = 25°C, Overdrive 10 mV,	V _{CC} = 2.2 V	1.4	1.9	3.4	_
		With filter: CAF=1	V _{CC} = 3 V	0.9	1.5	2.6	μs

NOTES: 1. The leakage current for the Comparator_A terminals is identical to $I_{lkg(Px.x)}$ specification.

^{2.} The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together.

650 V_{CC} = 2.2 V V(REFVT) - Reference Volts -mV 600 **Typical** 550 500 450 400 -45 -25 -5 15 35 55 75 95 T_A – Free-Air Temperature – $^{\circ}$ C

Figure 6. $V_{(RefVT)}$ vs Temperature, $V_{CC} = 3 V$

Figure 7. $V_{(RefVT)}$ vs Temperature, $V_{CC} = 2.2 \text{ V}$

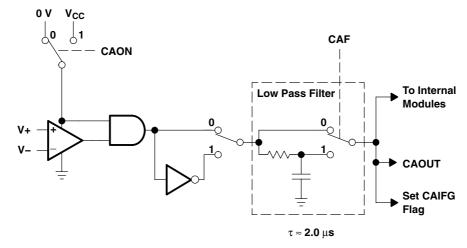


Figure 8. Block Diagram of Comparator_A Module

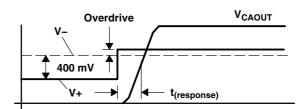


Figure 9. Overdrive Definition

PUC/POR

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
t(POR_Delay)	Internal time delay to release POR				150	250	μs
V _{POR}	V _{CC} threshold at which POR	$T_A = -40^{\circ}C$		1.4		1.8	V
	release delay time begins (see Note 1)	T _A = 25°C	V _{CC} = 2.2 V/3 V	1.1		1.5	V
		T _A = 85°C		0.8		1.2	٧
V _(min)	V _{CC} threshold required to generate a POR (see Note 2)	$V_{CC} dV/dt \ge 1V/ms$		0.2			V
t _(reset)	RST/NMI low time for PUC/POR	Reset is accepted internally		2			μs

NOTES: 1. V_{CC} rise time $dV/dt \ge 1V/ms$.

2. When driving V_{CC} low in order to generate a POR condition, V_{CC} should be driven to 200mV or lower with a dV/dt equal to or less than -1V/ms. The corresponding rising V_{CC} must also meet the dV/dt requirement equal to or greater than +1V/ms.

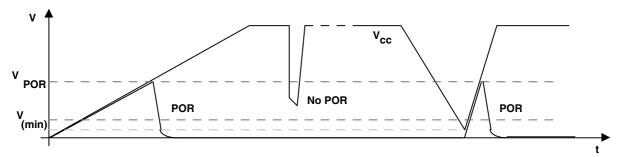


Figure 10. Power-On Reset (POR) vs Supply Voltage

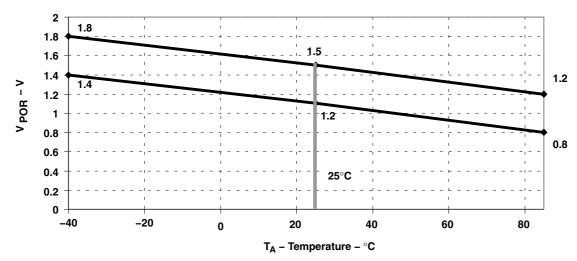
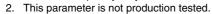



Figure 11. V_{POR} vs Temperature

DCO (see Note 1)

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
	R _{sel} = 0, DCO = 3, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 2.2 V	0.08	0.12	0.15	N 41 1-	
f _(DCO03)		V _{CC} = 3 V	0.08	0.13	0.16	MHz	
4	R _{sel} = 1, DCO = 3, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 2.2 V	0.14	0.19	0.23	NAL I-	
f(DCO13)		$V_{CC} = 3 V$	0.14	0.18	0.22	MHz	
	R _{sel} = 2, DCO = 3, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 2.2 V	0.22	0.30	0.36	N41.1-	
f(DCO23)		V _{CC} = 3 V	0.22	0.28	0.34	MHz	
	R _{sel} = 3, DCO = 3, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 2.2 V	0.37	0.49	0.59	N41.1-	
f _(DCO33)		V _{CC} = 3 V	0.37	0.47	0.56	MHz	
,	R _{sel} = 4, DCO = 3, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 2.2 V	0.61	0.77	0.93	N 41 1-	
f _(DCO43)		V _{CC} = 3 V	0.61	0.75	0.90	MHz	
	R _{sel} = 5, DCO = 3, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 2.2 V	1	1.2	1.5	N 41 1-	
(DCO53)		V _{CC} = 3 V	1	1.3	1.5	MHz	
4	R _{sel} = 6, DCO = 3, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 2.2 V	1.6	1.9	2.2	MHz	
f(DCO63)		V _{CC} = 3 V	1.69	2.0	2.29	IVII IZ	
	R _{sel} = 7, DCO = 3, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 2.2 V	2.4	2.9	3.4	N41.1-	
f(DCO73)		V _{CC} = 3 V	2.7	3.2	3.65	MHz	
f _(DCO47)	R _{sel} = 4, DCO = 7, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 2.2 V/3 V	f _{DCO40} × 1.7	f _{DCO40} × 2.1	f _{DCO40} × 2.5	MHz	
		V _{CC} = 2.2 V	4	4.5	4.9		
f _(DCO77)	$R_{sel} = 7$, DCO = 7, MOD = 0, DCOR = 0, $T_A = 25$ °C	V _{CC} = 3 V	4.4	4.9	5.4	MHz	
S _(Rsel)	$S_R = f_{Rsel+1} / f_{Rsel}$	V _{CC} = 2.2 V/3 V	1.35	1.65	2		
S _(DCO)	$S_{DCO} = f_{DCO+1} / f_{DCO}$	V _{CC} = 2.2 V/3 V	1.07	1.12	1.16		
	Temperature drift, R _{sel} = 4, DCO = 3, MOD = 0	V _{CC} = 2.2 V	-0.31	-0.36	-0.40	0/ /00	
D _t	(see Note 2)	V _{CC} = 3 V	-0.33	-0.38	-0.43	%/°C	
D _V	Drift with V_{CC} variation, $R_{sel} = 4$, DCO = 3, MOD = 0 (see Note 2)	V _{CC} = 2.2 V/3 V	0	5	10	%/V	

NOTES: 1. The DCO frequency may not exceed the maximum system frequency defined by parameter processor frequency, f_(System).

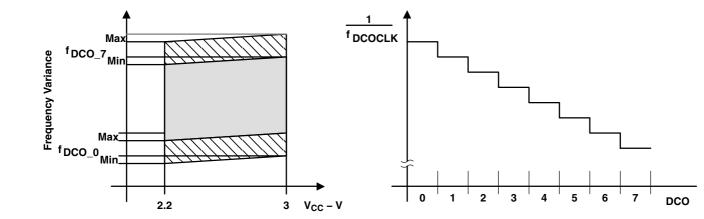


Figure 12. DCO Characteristics

main DCO characteristics

- Individual devices have a minimum and maximum operation frequency. The specified parameters for f_(DCOx0) to f_(DCOx7) are valid for all devices.
- All ranges selected by Rsel(n) overlap with Rsel(n+1): Rsel0 overlaps Rsel1, ... Rsel6 overlaps Rsel7.
- DCO control bits DCO0, DCO1, and DCO2 have a step size as defined by parameter S_{DCO}.
- Modulation control bits MOD0 to MOD4 select how often f_(DCO+1) is used within the period of 32 DCOCLK cycles. The frequency f_(DCO) is used for the remaining cycles. The frequency is an average equal to:

$$f_{average} = \frac{32 \times f_{(DCO)} \times f_{(DCO+1)}}{MOD \times f_{(DCO)} + (32 - MOD) \times f_{(DCO+1)}}$$

DCO when using R_{OSC} (see Note 1)

PARAMETER	TEST CONDITIONS	V _{CC}	MIN TYP	MAX	UNIT
f DCO output frequency	R _{sel} = 4, DCO = 3, MOD = 0, DCOR = 1,	2.2 V	2.0±15%		MHz
f _{DCO} , DCO output frequency	T _A = 25°C	3 V	2.1±15%		MHz
D _t , Temperature drift	R _{sel} = 4, DCO = 3, MOD = 0, DCOR = 1	2.2 V/3 V	±0.1		%/°C
D _v , Drift with V _{CC} variation	R _{sel} = 4, DCO = 3, MOD = 0, DCOR = 1	2.2 V/3 V	10		%/V

NOTES: 1. $R_{OSC} = 100 k\Omega$. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and $T_K = \pm 50 ppm/^{\circ}C$.

crystal oscillator, LFXT1 oscillator (see Note 1)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Integrated input conscitance	XTS=0; LF oscillator selected V _{CC} = 2.2 V/3 V	12			pF
C _{XIN} Integrated input capacitance		XTS=1; XT1 oscillator selected V _{CC} = 2.2 V/3 V	2			рг
	Internated autout and a second	XTS=0; LF oscillator selected V _{CC} = 2.2 V/3 V	12			ר
C _{XOUT}	Integrated output capacitance	XTS=1; XT1 oscillator selected V _{CC} = 2.2 V/3 V	2			pF
V _{IL}	Input levels at XIN	V _{CC} = 2.2 V/3 V (see Note 2)	V _{SS}		$0.2 \times V_{CC}$	٧
V _{IH}	Input levels at Aliv	$V_{CC} = 2.2 \text{ V/S V (see Note 2)}$	$0.8 \times V_{CC}$		V_{CC}	V

NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.

crystal oscillator, XT2 oscillator (see Note 1)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{XIN}	Integrated input capacitance	V _{CC} = 2.2 V/3 V	2			pF
C _{XOUT}	Integrated output capacitance	V _{CC} = 2.2 V/3 V	2			pF
V_{IL}	Input levels at VTOIN	V 0.0 V/2 V (one Note 0)	V _{SS}	($0.2 \times V_{CC}$	V
V _{IH}	Input levels at XT2IN	V _{CC} = 2.2 V/3 V (see Note 2)	0.8 × V _{CC}		V _{CC}	V

NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.

USART0 (see Note 1)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
LICARTO, do el	$t_{(\tau)}$ USART0: deglitch time	$V_{CC} = 2.2 \text{ V}$	200	430	800	
	$t_{(\tau)}$ USARTU: deglitch time	V _{CC} = 3 V	150	280	500	ns

NOTE 1: The signal applied to the USART0 receive signal/terminal (URXD0) should meet the timing requirements of t_(τ) to ensure that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t_(τ). The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD0 line.

^{2.} Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.

^{2.} Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.

MSP430C13x1 MIXED SIGNAL MICROCONTROLLER

SLAS341C - SEPTEMBER 2001 - REVISED DECEMBER 2008

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

JTAG Interface

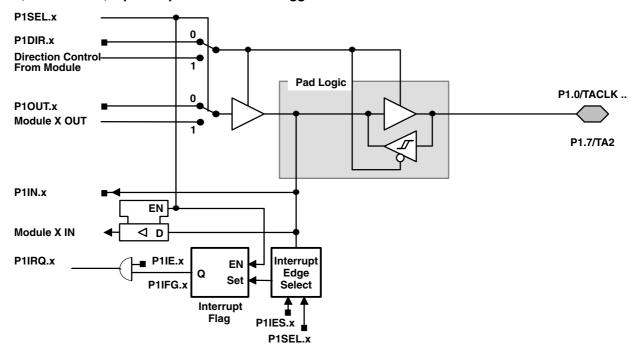
	PARAMETER	TEST CONDITIONS	v _{cc}	MIN	TYP	МАХ	UNIT
f _{TCK}	TCK input frequency		2.2 V	0		5	MHz
		see Note 1	3 V	0		10	MHz
R _{Internal}	Internal pull-up resistance on TMS, TCK, TDI/TCLK	see Note 2	2.2 V/ 3 V	25	60	90	kΩ

NOTES: 1. f_{TCK} may be restricted to meet the timing requirements of the module selected.

JTAG Fuse (see Note 1)

	PARAMETER	TEST CONDITIONS	v _{cc}	MIN	TYP	МАХ	UNIT
V_{FB}	Voltage level on TDI/TCLK for fuse-blow		3.6V	5		5.5	V
I_{FB}	Supply current into TDI/TCLK during fuse blow					100	mA
t _{FB}	Time to blow fuse					20	ms

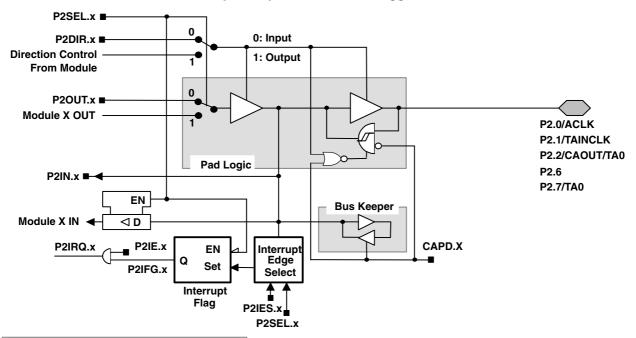
NOTES: 1. Once the fuse is blown, no further access to the MSP430 via JTAG/Test is possible. The JTAG block is switched to bypass mode.



^{2.} TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions.

APPLICATION INFORMATION

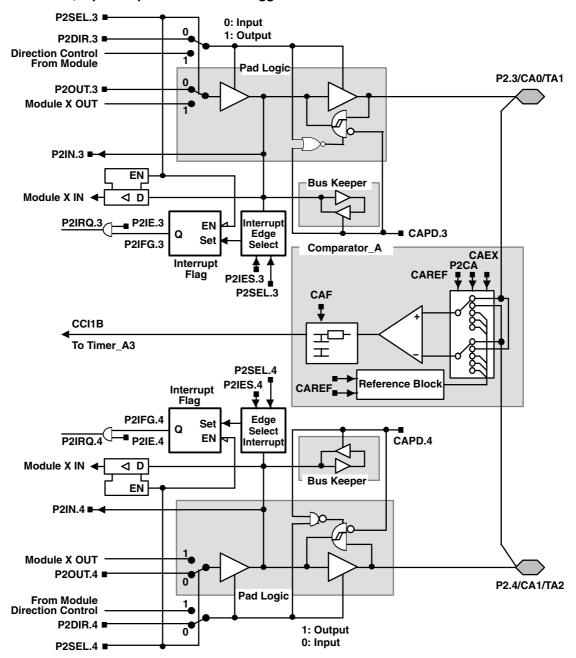
input/output schematic


port P1, P1.0 to P1.7, input/output with Schmitt trigger

PnSel.x	PnDIR.x	Dir. CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN	PnIE.x	PnIFG.x	PnIES.x
P1Sel.0	P1DIR.0	P1DIR.0	P1OUT.0	DV _{SS}	P1IN.0	TACLK [†]	P1IE.0	P1IFG.0	P1IES.0
P1Sel.1	P1DIR.1	P1DIR.1	P1OUT.1	Out0 signal [†]	P1IN.1	CCI0A [†]	P1IE.1	P1IFG.1	P1IES.1
P1Sel.2	P1DIR.2	P1DIR.2	P1OUT.2	Out1 signal [†]	P1IN.2	CCI1A [†]	P1IE.2	P1IFG.2	P1IES.2
P1Sel.3	P1DIR.3	P1DIR.3	P1OUT.3	Out2 signal†	P1IN.3	CCI2A [†]	P1IE.3	P1IFG.3	P1IES.3
P1Sel.4	P1DIR.4	P1DIR.4	P1OUT.4	SMCLK	P1IN.4	unused	P1IE.4	P1IFG.4	P1IES.4
P1Sel.5	P1DIR.5	P1DIR.5	P1OUT.5	Out0 signal [†]	P1IN.5	unused	P1IE.5	P1IFG.5	P1IES.5
P1Sel.6	P1DIR.6	P1DIR.6	P1OUT.6	Out1 signal [†]	P1IN.6	unused	P1IE.6	P1IFG.6	P1IES.6
P1Sel.7	P1DIR.7	P1DIR.7	P1OUT.7	Out2 signal [†]	P1IN.7	unused	P1IE.7	P1IFG.7	P1IES.7

[†] Signal from or to Timer_A

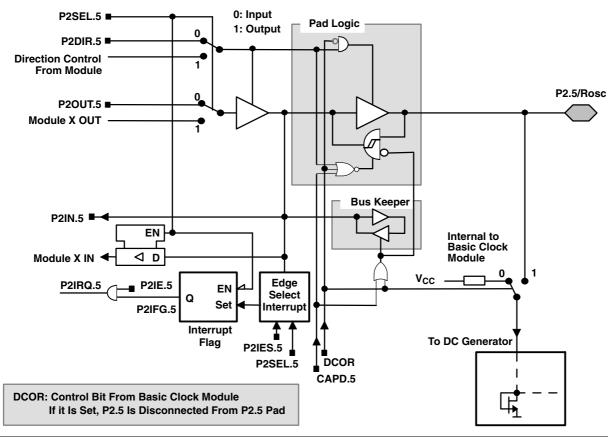
port P2, P2.0 to P2.2, P2.6, and P2.7 input/output with Schmitt trigger


x: Bit Identifier 0 to 2, 6, and 7 for Port P2

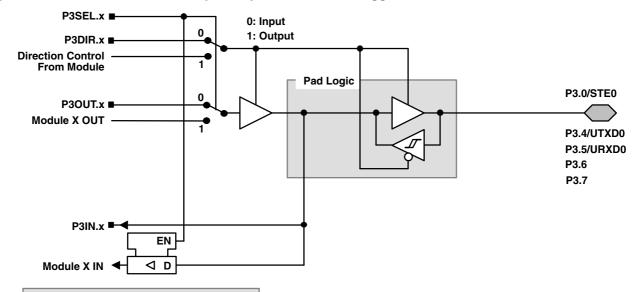
PnSel.x	PnDIR.x	Dir. CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN	PnIE.x	PnIFG.x	PnIES.x
P2Sel.0	P2DIR.0	P2DIR.0	P2OUT.0	ACLK	P2IN.0	unused	P2IE.0	P2IFG.0	P2IES.0
P2Sel.1	P2DIR.1	P2DIR.1	P2OUT.1	DV _{SS}	P2IN.1	INCLK‡	P2IE.1	P2IFG.1	P2IES.1
P2Sel.2	P2DIR.2	P2DIR.2	P2OUT.2	CAOUT [†]	P2IN.2	CCI0B [‡]	P2IE.2	P2IFG.2	P2IES.2
P2Sel.6	P2DIR.6	P2DIR.6	P2OUT.6	DV _{SS}	P2IN.6	unused	P2IE.6	P2IFG.6	P2IES.6
P2Sel.7	P2DIR.7	P2DIR.7	P2OUT.7	Out0 signal [§]	P2IN.7	unused	P2IE.7	P2IFG.7	P2IES.7

[†] Signal from Comparator_A ‡ Signal to Timer_A

[§] Signal from Timer_A


port P2, P2.3 to P2.4, input/output with Schmitt trigger

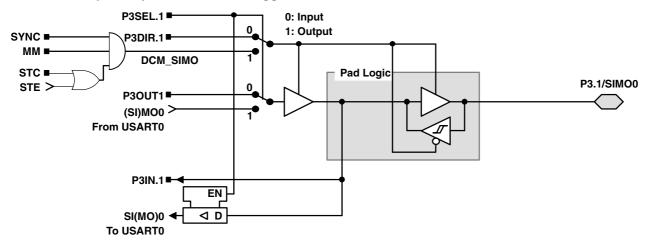
PnSel.x	PnDIR.x	DIRECTION CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN	PnIE.x	PnIFG.x	PnlES.x
P2Sel.3	P2DIR.3	P2DIR.3	P2OUT.3	Out1 signal [†]	P2IN.3	unused	P2IE.3	P2IFG.3	P2IES.3
P2Sel.4	P2DIR.4	P2DIR.4	P2OUT.4	Out2 signal [†]	P2IN.4	unused	P2IE.4	P2IFG.4	P2IES.4


[†] Signal from Timer_A

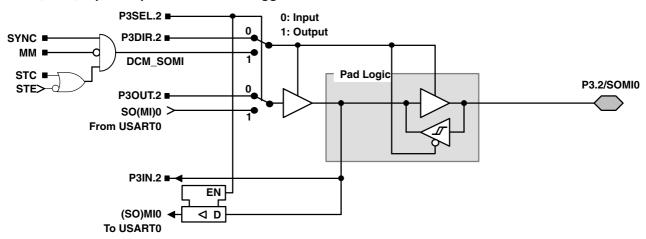
port P2, P2.5, input/output with Schmitt trigger and R_{osc} function for the basic clock module

PnSel.x	PnDIR.x	DIRECTION CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnlN.x	MODULE X IN	PnIE.x	PnlFG.x	PnIES.x
P2Sel.5	P2DIR.5	P2DIR.5	P2OUT.5	DV _{SS}	P2IN.5	unused	P2IE.5	P2IFG.5	P2IES.5

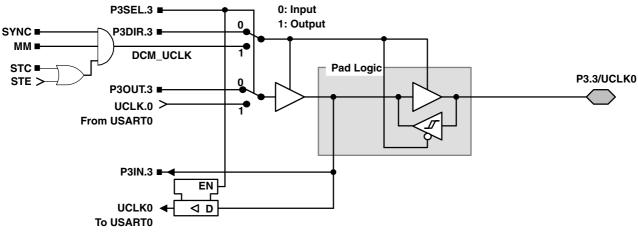
port P3, P3.0 and P3.4 to P3.7, input/output with Schmitt trigger


x: Bit Identifier, 0 and 4 to 7 for Port P3

PnSel.x	PnDIR.x	DIRECTION CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN
P3Sel.0	P3DIR.0	DV _{SS}	P3OUT.0	DV _{SS}	P3IN.0	STE0
P3Sel.4	P3DIR.4	DV _{CC}	P3OUT.4	UTXD0 [†]	P3IN.4	Unused
P3Sel.5	P3DIR.5	DV _{SS}	P3OUT.5	DV _{SS}	P3IN.5	URXD0 [‡]
P3Sel.6	P3DIR.6	DV _{CC}	P3OUT.6	DV _{SS}	P3IN.6	Unused
P3Sel.7	P3DIR.7	DV _{SS}	P3OUT.7	DV _{SS}	P3IN.7	Unused

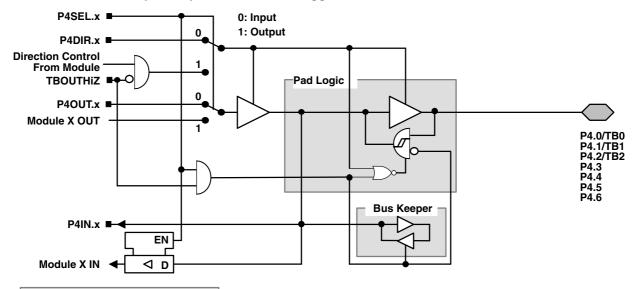

[†] Output from USART0 module

[‡] Input to USART0 module


port P3, P3.1, input/output with Schmitt trigger

port P3, P3.2, input/output with Schmitt trigger

port P3, P3.3, input/output with Schmitt-trigger

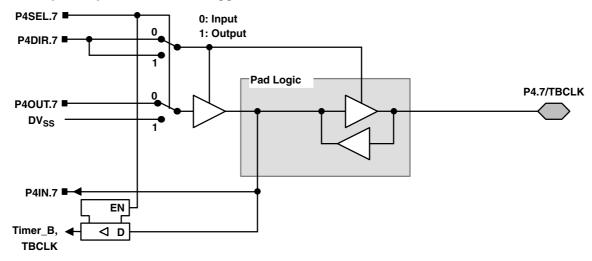


NOTE: UART mode: The UART clock can only be an input. If UART mode and UART function are selected, the P3.3/UCLK0 is always an input. SPI, slave mode: The clock applied to UCLK0 is used to shift data in and out.

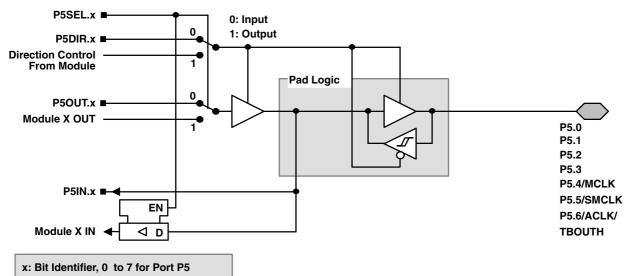
SPI, master mode: The clock to shift data in and out is supplied to connected devices on pin P3.3/UCLK0 (in slave mode).

port P4, P4.0 to P4.6, input/output with Schmitt trigger

x: bit identifier, 0 to 6 for Port P4


PnSel.x	PnDIR.x	DIRECTION CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN
P4Sel.0	P4DIR.0	P4DIR.0	P4OUT.0	Out0 signal†	P4IN.0	CCI0A / CCI0B‡
P4Sel.1	P4DIR.1	P4DIR.1	P4OUT.1	Out1 signal [†]	P4IN.1	CCI1A / CCI1B‡
P4Sel.2	P4DIR.2	P4DIR.2	P4OUT.2	Out2 signal [†]	P4IN.2	CCI2A / CCI2B‡
P4Sel.3	P4DIR.3	P4DIR.3	P4OUT.3	DV _{SS}	P4IN.3	Unused
P4Sel.4	P4DIR.4	P4DIR.4	P4OUT.4	DV _{SS}	P4IN.4	Unused
P4Sel.5	P4DIR.5	P4DIR.5	P4OUT.5	DV _{SS}	P4IN.5	Unused
P4Sel.6	P4DIR.6	P4DIR.6	P4OUT.6	DV_SS	P4IN.6	Unused

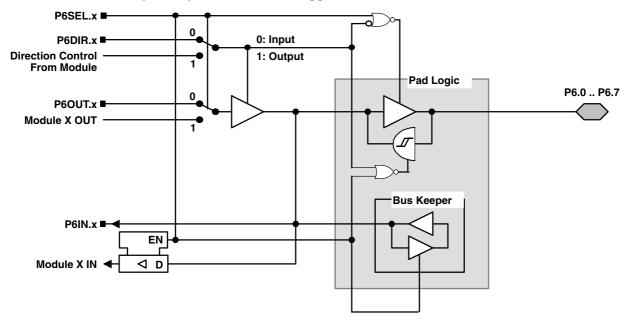
[†] Signal from Timer_B


NOTE: TBoutHiZ signal is used by port module P4, pins P4.0 to P4.6. The function TBoutHiZ is mainly used with Timer_B. Port pins P4.3 to P4.6 have the TBoutHiZ function, but no Timer_B output is available for secondary functions. The port selection function can be used to get the port pin to high impedance and to use the P4DIR.x bits.

[‡] Signal to Timer_B

port P4, P4.7, input/output with Schmitt trigger

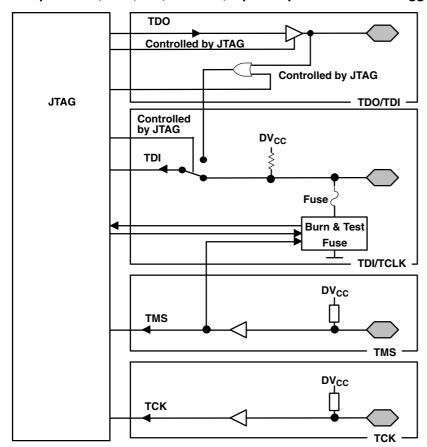
port P5, P5.0 to P5.7, input/output with Schmitt trigger



PnSel.x	PnDIR.x	Dir. CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN
P5Sel.0	P5DIR.0	DV_SS	P5OUT.0	DV_SS	P5IN.0	unused
P5Sel.1	P5DIR.1	DV _{CC}	P5OUT.1	DV_SS	P5IN.1	unused
P5Sel.2	P5DIR.2	DV _{CC}	P5OUT.2	DV_SS	P5IN.2	unused
P5Sel.3	P5DIR.3	DV _{CC}	P5OUT.3	DV_SS	P5IN.3	unused
P5Sel.4	P5DIR.4	DV _{CC}	P5OUT.4	MCLK	P5IN.4	unused
P5Sel.5	P5DIR.5	DV _{CC}	P5OUT.5	SMCLK	P5IN.5	unused
P5Sel.6	P5DIR.6	DV _{CC}	P5OUT.6	ACLK	P5IN.6	unused
P5Sel.7	P5DIR.7	DV _{SS}	P5OUT.7	DV_SS	P5IN.7	TBOUTHIZ

NOTE: TBOUTHiZ signal is used by port module P4, pins P4.0 to P4.6. The function of TBOUTHiZ is mainly useful when used with Timer_B.

port P6, P6.0 to P6.7, input/output with Schmitt trigger



x: Bit Identifier, 0 to 7 for Port P6

PnSel.x	PnDIR.x	DIR. CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN
P6Sel.0	P6DIR.0	P6DIR.0	P6OUT.0	DV _{SS}	P6IN.0	unused
P6Sel.1	P6DIR.1	P6DIR.1	P6OUT.1	DV _{SS}	P6IN.1	unused
P6Sel.2	P6DIR.2	P6DIR.2	P6OUT.2	DV _{SS}	P6IN.2	unused
P6Sel.3	P6DIR.3	P6DIR.3	P6OUT.3	DV _{SS}	P6IN.3	unused
P6Sel.4	P6DIR.4	P6DIR.4	P6OUT.4	DV _{SS}	P6IN.4	unused
P6Sel.5	P6DIR.5	P6DIR.5	P6OUT.5	DV _{SS}	P6IN.5	unused
P6Sel.6	P6DIR.6	P6DIR.6	P6OUT.6	DV _{SS}	P6IN.6	unused
P6Sel.7	P6DIR.7	P6DIR.7	P6OUT.7	DV _{SS}	P6IN.7	unused

NOTE: Direction control bits P6DIR.x and P6SEL.x control whether the port function is active (P6DIR.x=0) or whether the input P6.x is in the high-impedance state. This is identical to the port P6 function in the MSP430F13x devices (used for emulation/prototyping), but different from other digital-only ports such as P5.

JTAG pins TMS, TCK, TDI, TDO/TDI, input/output with Schmitt trigger

During Blowing of the Fuse, Pin TDO/TDI Is Used to Apply the Test Input Data for JTAG Circuitry

JTAG fuse check mode

MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, I_{TF}, of 1 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.

Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated.

The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see Figure 13). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition).

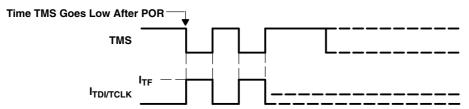


Figure 13. Fuse Check Mode Current

PACKAGE OPTION ADDENDUM

5-Dec-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MSP430C1331IPM	ACTIVE				TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated