With External Reference Input

Functional Diagram

ルノメ1～レI

ルノエメIバン is a registered trademark of Maxim Integrated Products．

High-Spood 12-Bit A/D Converters With External Reference Input

ABSOLUTE MAXIMUM RATINGS													
VDD 0 DGAD		-0.3 V to +7 V	Continuòus Power Dissipation (any package)										
AGND to DGND													
AIN1, AIN2 to AGNDVREE TOAGND....													
		SSS-0.3V to VDD +0.3 V											
			MX76728_1C_ 40.40										
		-0.3V to VDD+0.3V	MX7672T- ${ }^{\text {- }}$			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$							
(D11-D0, EUSY, CLKOUT) - -0.3V to VDD +0.3 V			Lead Temperature (soldering, 10 sec)										
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional absolute maximum rating conditions for extended periods may affect device reliability													
ELECTRICAL CHARACTERISTICS $\left(V D D=+5 \mathrm{~V} \pm 5 \%, \mathrm{VSS}=-12 \mathrm{~V} \pm 10 \%\right.$; $\mathrm{V}_{\text {REF }}=-5 \mathrm{~V}$; Slow-Memory Mode; $\mathrm{fCLK}=4 \mathrm{MHz}$ for $\mathrm{MX} 7672 __03$, $\mathrm{fCLK}=2.5 \mathrm{MHz}$ for MX7672 $_$_ 05 , fCLK $=1.25 \mathrm{MHz}$ for MX7672 - $10 ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted.)													
PARAMETER SYMBOL CONDITIONS		CONDITIONS		MIN	TYP MAX	UNITS							
ACCURACY (Note 1)													
Resolution	N						12		Bits				
Integral Nonlinearity	INL	Tested range $\pm 5 \mathrm{~V}$	MX7672C/L		$\pm 1 / 2$	LSB							
			MX7672U, $\mathrm{TA}^{\text {A }}+25^{\circ} \mathrm{C}$		$\pm 1 / 2$								
			MX7672U		$\pm 3 / 4$								
			MX7672B/KT		± 1								
Differential Nonlinearity	DNL	12 bits, no missing codes over temp.			± 0.9	LSB							
Unipolar Offset Error		MX7672C/LU	$T_{A}=+25^{\circ} \mathrm{C}$		± 3	LSB							
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		± 4								
		MX7672B/KT	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 5								
			$\mathrm{T}_{A}=\mathrm{T}_{\text {min to }} \mathrm{Tmax}^{\text {a }}$		± 6								
Unipolar Gain Error		MX7672C/LU	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 4	LSB							
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {min to }}$ Tmax		± 6								
		MX76728/K/T	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 5								
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {min to }} \mathrm{T}_{\text {max }}$		± 7								
Bipolar Zero Error		MX7672C/LU	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 3	LSB							
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		± 4								
		MX76728/KT	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 5								
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {min to }} \mathrm{T}_{\text {max }}$		± 6								
Bipolar Gain Error		MX7672C/LU	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 4	LSB							
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {min to }} \mathrm{T}_{\text {max }}$		± 6								
		MX76728/K/T	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 5								
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {min to }} \mathrm{T}_{\text {max }}$		± 7								
Corversion Time	TConv	$\underset{\substack{\text { Synchronous Clk } \\ \text { (12.5clks) }}}{\text { (}}$	MX7672 - 03		3.125	$\mu \mathrm{s}$							
			M $\times 7672$ - 05		5								
			M $\times 7672$ - 10		10								
		$\underset{\substack{\text { Asynchronous Clk } \\ \text { (12 to } 13 \mathrm{clks})}}{ }$	MX7672 - 03	3.0	3.25								
			M $\times 7672$ - 05	4.8	5.2								
			MX7672 - 10	9.6	10.4								
ANALOG AND REFERENCE INPUTS													
Analog Input Current, AlN1 or AlN2		Unipolar input ranges OV to $+5 \mathrm{~V}, \mathrm{OV}$ to +10 V			3.5	mA							
		Bipolar range $\pm 5 \mathrm{~V}$			± 1.75								
VREF Input Range (Note 2)				-5.05	4.95	V							
2													

High-Speed 12-Bit A/D Converters With External Reference Input

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LOCIC						
Input Low Voltage	VINL	$\overline{\text { CS, }}$, $\overline{\mathrm{D}}, \mathrm{CLKIN}$			0.8	V
Input High Voitage	V INH	$\overline{\text { CS, }}$, $\overline{\mathrm{D}}, \mathrm{CLKIN}$	2.4			V
Input Current	In	$\overline{C S}, \overline{R D} ; V_{I N}=0$ to $V_{D D}$			± 10	$\mu \mathrm{A}$
		$C L K I N ; ~ V I N=0$ to $V_{D D}$			± 20	
Input Capacitance (Note 2)	CiN				10	pF
Output Low Voltage	VoL	D11-D0, $\overline{\text { BUSY, }}$ CLKOUT; 1 ISINK $=1.6 \mathrm{~mA}$			0.4	V
Output High Voltage	VOH	D11-D0, BUSY, CLKOUT; ISOURCE $=200 \mu \mathrm{~A}$	4.0			V
Floating State Leakage Current	ILKG	D11-DO; VOUT $=0 \mathrm{~V}$ to VDD			± 10	$\mu \mathrm{A}$
Floating State Output Capacitance (Note 2)	Cout				15	pF
POWER REQUIREMENTS						
Supply Voltage	$V_{D D}$		4.75	5	5.25	V
	VSS		-13.2	-12	-10.8	
Supply Current	IDD	$\begin{aligned} & \overline{\mathrm{CS}}=\overline{\mathrm{RD}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{AIN} 1=\mathrm{AIN2}=5 \mathrm{~V}, \\ & \mathrm{BUSY}=\mathrm{HIGH} \end{aligned}$			7	mA
	Iss				-12	
Power Dissipation	PD	$V_{D D}=5 \mathrm{~V}, \mathrm{VSS}=-12 \mathrm{~V}$		110	179	mW
Power-Supply Rejection, $\mathrm{V}_{\text {DD }}$ Only		FS Change, V ${ }^{\text {SS }}=-12 \mathrm{~V}, \mathrm{~V} D \mathrm{D}=4.75 \mathrm{~V}$ to 5.25 V		$\pm 1 / 4$	± 2	LSB
Power-Supply Rejection, VSS Only		FS Change, VDD $=5 \mathrm{~V}, \mathrm{VSS}=-10.8 \mathrm{~V}$ to -13.2V		$\pm 1 / 2$	± 1	LSB

TIMING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ALL GRADES			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ MX7672K/L/B/C		$\begin{gathered} \mathrm{T}_{A}=\text { TMIN to }_{\text {MX7672T/U }} \\ \text { MAX } \end{gathered}$		UNITS
			MIN	TYP	MAX	MIN	TYP MAX	MIN	TYP MAX	
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}$ Setup Time (Note 2)	t1.		0			0		0		ns
$\overline{\mathrm{RD}}$ to $\overline{\mathrm{BUSY}}$ Delay	t2	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		70	190		230		270	ns
Data-Access Time (Note 4)	t3	$C L=100 \mathrm{pF}$		50	125		150		170	ns
$\overline{\text { RD Pulse Width (}}$ (ote 2)	t4		t3			13		t3		ns
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}$ Hold Time (Note 2)	t5		0			0		0		ns
Data-Setup Time After BUSY (Note 4)	t6	$C_{L}=100 \mathrm{pF}$		40	70		90		100	ns
Bus-Relinquish Time (Note 5)	t7			30	75		85		90	ns
Delay Between Read Operations	t8		200			200		200		ns
CLKIN to BUSY Delay (Note 2)	t9				120		150		180	ns
$\overline{\mathrm{RD}}$ to CLKIN Setup/Hold Time (Notes 2 6)	t10		25		100	25	100	25	100	ns

ote 1: $V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-12 \mathrm{~V}, 1 \mathrm{LSB}=\mathrm{FS} / 4096$. Performance over power-supply tolerance is guaranteed by power-supply rejection tes. Note 2: Guaranteed by
Note 3: All inputs are OV to +5 V swing with $\mathrm{tr}=\boldsymbol{t}=5 \mathrm{~ns}(10 \%$ to 90% of $+5 \mathrm{~V})$ and timed from a voltage level of +1.6 V .
Note 4: t 3 and t 6 are measured with the load circuits of Figure 1 and defined as the time required for an output to cross +0.8 V or +2.4 V Note 5: $\mathbf{t 7}$ is defined as the time required for the data lines to change 0.5 V when loaded with the circuit of Figure 2 . Note 6: For predictable conversion times, RD to CLKIN falling edge must be outside this window. If find first falling CLKIN edge and start on second falling CLKIN edge. If $\mathrm{t} 10>100 \mathrm{~ns}$, conversion will start on first falling CLKIN edge

Mish-Speed 12-Bit A/D Converters With External Reference Input

24-PiN	28-PIN	NAME	FUNCTION
	1,8,15,22		No Connect
1	2	AIN1	Analog input
2	3	VREF	Voltage-Reference Input
3	4	AGND	Analog Ground
4-11	5-13	D11-D4	Three-State Data Outputs. They are active when CS and RD are low. D11 is the most significant bit.
12	14	DGND	Digital Ground
13-16	16-19	D3-D0	Three-State Data Outputs
17	20	CLKIN	Clock Input. Connect an external TIL- compatible clock to CLKIN. Alternatively, insert a crystal or ceramic resonator between CLKIN and CLKOUT.
18	21	CLKOUT	Clock Output. When using an external clock, an inverted CLKIN signal appears on CLKOUT. See CLKIN description.
19	23	$\overline{\mathrm{RD}}$	$\overline{\mathrm{AEAD}}$ Input. Along with $\overline{\mathrm{CS}}$, this active low signal enables the three-state drivers and starts a conversion.
20	24	$\overline{\mathrm{CS}}$	this active low signal enables the three-state drivers and starts a conversion
21	25	BUSY	BUSY. Low while a conversion is in progress. BUSY indicates con verter status.
22	26	Vss	Negative Supply, -12V
23	27	VDD	Positive Supply, +5 V
24	28	AIN2	Analog Input

Figure 2. Load Circuits for Bus-Relinquish Time

Figure 3. M 77672 Operational Diagram

High-Speed 12-Bit A/D Converters With External Reference Input

\qquad Detalled Description Converter Operation
The MX7672 uses a successive approximation technique to convert an analog input to a 12-bit digital output code. The control logic provides easy interface to most $\mu \mathrm{Ps}$ (Figure 3).
Figure 4 shows the MX7672 analog-equivalent circuit. The internal D/A converter (DAC) is controlled by a successive approximation register (SAR), has an output impedance or input The analog inputs AN1 and AN2 connect to the same comparator input through $5 k \Omega$ resis ough $5 k \Omega$ resistors
A conversion starts at the falling edge of $\overline{C S}$ and $\overline{R D}$ and cannot be restarted after initiation. The BUSY output goes low when the conversion starts and can be used to control an external sample-and-hold when measuring wide bandwidth input signals.
The SAR is set, asynchronously with the clock input, to half scale when CS and RD go low. At the second falling edge of CLKIN (or rising edge of CLKOUT) following a conversion start, the output of the comparator is latched into the SAR most significant bit (MSB/D11) (Figure 5). The MSB is kept if the analog input is greater than half scaie or dropped if it is smaller. The next bit (D10) is then set with the DAC output either at $1 / 4$ scale (if the MSB was dropped) or $3 / 4$ scale (if the MSB was kept). The conversion continues in this manner until the LSB is tried. At conversion end, following a falling CLKIN signal, $\overline{B U S Y}$ goes high and the SAR result is latched into three-state output buffers

Figure 4. MX7672 AIN Inputs

Clock

 Internal Clock OscillatorFigure 6 shows the MX7672 clock circuitry. Minimize the capacitive load on the CLKOUT pin for low power dissipation and to avoid digital coupling of the CLKOUT buffer current to the comparator. CLKOUT should be left open if an external clock source is used to drive CLKIN. Connect a crystal/ceramic resonator between CLKOUT and CLKIN if the internal oscillator is used

Control Inputs Synchronization
When $\overline{\mathrm{RD}}$ is not synchronized with the ADC clock, the conversion time can vary from 12 to 13 clock cycles. The SAR changes state on the falling edge of the CLKIN inpu (or rising edge on the CLKOUT pin). Use the following guidelines to ensure a fixed conversion time: The MAX7672 $\overline{R D}$ input should go low at the rising edge of CLKIN In this case, the conversion lasts 12.5 clock cycles,

Figure 5. Operating Waveforms Using an External Clock
Source for CLKIN

Figure 6. MX7672 Internal Clock Circuit

Hlyh-Speed 12-Bit A/D Converters With External Reforence Input

His $3.125 \mu \mathrm{~s}$ wen $\mathrm{FL}=\mathrm{MK}$ - $5 \mu \mathrm{~s}$ when fCLK $=2.5 \mathrm{MHz}$, and $10 \mu \mathrm{~s}$ when fCLK $=$ (1) falling edge of CLKIN must not be less than 100 ns to - ensure the 12.5 clock cycle conversion time (Figure 7). This gives the external sample-and-hold 1.5 clock cy cles to settle from hold transients. An additional $1 / 2$ clock cycle of settling can be allowed for the sample-and-hold by having RD go low at the falling edge of CLKIN. This results in a 13 -cycle conversion time $(3.25 \mu \mathrm{~s}, 5.2 \mu \mathrm{~s}$, and $10.4 \mu \mathrm{~s})$.

Digital Interface

Timing and Control
$\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ control conversion start and data-read oper ations. Figure 8 shows the logic equivalent for the conversion and the data-output control circuitry. A logic low at both inputs starts a conversion. Once a conversion in progress, it cannot be restarted. The BUSY outpu remains low during the entire conversion cycle.
Figures 9 and 10 outline the two interface modes (slow memory and ROM). Slow-memory mode is for μ Ps tha memory and ROM). Slow-memory mode is for μ Ps tha can be forced into a wait state for periods as long as that cannot be forced into a wait state. In both interface modes, a processor read operation to the ADC address starts the conversion. In the ROM mode, a second read operation accesses the conversion result.

Figure 7. MX7672 RD and CLKIN for Synchronous
Operation and conversion time of 12.5 clock cycles

Slow-Memory Mode
The timing diagram in Figure 9 illustrates slow-mem$\frac{\text { ory mode, which is designed for } \mu \text { Ps with a wait state. }}{\mathrm{CS}}$ and RD go low, triggering a conversion, and are kept low until the conversion is complete. BUSY responds by going low, and data from the previous conversion remains on the three-state data outputs. At conversion end, $\overline{B U S Y}$ returns high, and the output latches transfer the new conversion results to the three-state data outputs. The $\mu \mathrm{P}$ completes the read operation by taking $\overline{\mathrm{CS}}$ and $\overline{R D}$ high.

ROM Mode
The ROM mode avoids placing the $\mu \mathrm{P}$ into a wait state A conversion begins with a read operation. While CS and $\overline{\mathrm{RD}}$ are low, data from the last conversion is available on the data outputs. A second read operation reads the new data and begins the conversion process again. A delay at least as long as the MX7672 conversion time must be alowed be in parale topations. The data output bus is in a parallel format in either mode.

Application Hints

Digital Bus Noise

If the data bus connected to the ADC is active during a conversion, coupling from the data pins to the ADC comparator may cause LSBs of error. Using slowmemory mode avoids this problem by placing the $\mu \mathrm{P}$ into a wait state during the conversion. In ROM mode, if the data bus is active during the conversion, use three-state drivers to isolate the bus from the ADC.

Figure 8. Logic for Control Inputs $\overline{C S}$ and $\overline{R D}$ Internal

High-Speed 12-Bit A/D Converters With External Reference Input

ROM Mode
Digital noise is generated in the ADC when $\overline{\mathrm{RD}}$ or $\overline{\mathrm{CS}} \mathrm{go}$ high, and the output data drivers are disabled after a conversion is started. This noise will feed into the ADC comparator and cause large errors ifit coincide with the me the SAR is lating a bit decision. To avoid thi roblem, RD and CS should be active for less than one lock cycle. In other words, the RD and CS low pulse hould be less than 250ns for the MX7672_-03,400ns for the MX7672__05, and 1us for the MX7672 -10 . If his cannot be done, the $\overline{\mathrm{RD}}$ or $\overline{\mathrm{CS}}$ signal must go high rising edge of CLKIN, since the comparator output is always latched at falling edges of CLKIN.

Physical Layout
For best system performance, printed circuit boards Should be used for the MX7672, wire-wrap boards are ot recommended. Separate the digital-analog-signal lines as much as possible in the board layout Donotrun and digital lines parallel to each other or digita ines underneath the MX7672 package.

Grounding
Figure 11 shows the recommended system ground connections. Establish a single-point analog ground (sta ground), separate from the logic ground, at AGND of the MX7672. Connect all other analog grounds and DGND of the MX7672 to this star ground (no other digital ground should be connected to this point). For noise-free operation of the ADC, use a low-impedance ground return to the powe supply from this star ground.

Power-Supply Bypassing
The ADC's high-speed comparator is sensitive to high requency noise in the VDD and VSS power supplies hese supplies should be bypassed to the analog star minimulead length for supply noise rejection If the 5 V pon lealy is (108-20Q) resisto me conly (Figure 11) to filter external noise.

Driving The Analog Input

The input signal leads to AIN and the input return leads AGND should be as short as possible to minimize inpu noise coupling. Use shielded cable if the leads must be long
The input impedance at each AIN is typically $5 \mathrm{k} \Omega$. The molifier driving AIN must have low enough DC output lon for low must have low enough DC output impedance is noeded since the analog input current modulated at the clock rate during a conversion (up to 4 MHz for MX7672 $03,25 \mathrm{MHz}$ for MX7672 05 , 125 MHz for the $M \times 7672$ 10) The output impedance of the driving amplifier is equal to its open-loop output
mpedance divided by the loop gain at the frequency interest

MX7672_ _05/10 - The MX7672_ _05/10 maximum clock rate of 2.5 MHz makes it possible to drive AIN with amplifiers like the OP42, AD711 or a Maxim OP27. A MAX400 or a Maxim OP07 can also be used up to 1.25 MHz clock rate.

MX7672_ _03 - The MX7672_ _03, with a maximum 4 MHz clock rate, might exhibit settling problems with th above amplifiers. An LF356, LF400 or LT1056 can be used to drive the input. Alternatively, an emitter follower buffer inside the feedback loop of a Maxim OP27, an OP42, or an AD711 improves high-frequency output impedance.

Reference Imput
VREF connects to an external -5 V source. This may be either a precision negative reference, a positive reference (such as the MX584) connected as a two-terminal device to provide -5V (Figure 16), or an existing system reference. The allowed input range at REFIN is -5.1 V to -4.9 V . VREF (and AIN2 in bipolar input operation) should be bypassed to ground with a $10 \mu \mathrm{~F}$ electrolytic capacito in parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor
If the external reference is biased from a power supply ther than VSS, care must be taken to ensure that VSS is applied to the ADC before VREF. If supply sequencing uncertain, connect a diode between VSS and VREF, as show in Figure 12. No diode is needed if the reference source is powered from the same supply as VSS

Mx7672 to

Sample-and-Hold Interface
The analog input to the ADC must be stable to within /2LSB during the entire conversion for specified 12-b accuracy. This limits the input-signal bandwidth to less aster MX7672 A3. A sample and hold should be used for higher bandwidth signals
The BUSY output from the MX7672 may be used to provide the TRACK/HOLD signal to the sample and-hold amplifier. However, since the ADC's DAC is switched at approximately the same time as the BUSY signal goes low, sample-and-hold transients caused by DAC switching may result in code-dependent errors due to sample-and-hold aperture delay. Adding a NAND (inverted AND) gate ensures that the sample-and-hold is switched Figures 13 and 14) The NAND gate solution Figures is and 14). The $\overline{\mathrm{RD}}$ pus is wider than the $\overline{\mathrm{RD}}$ to BUSY delay in the MX7672 If this is not the ase, use a flip flop, which is set by the falling edge $\overline{\mathrm{RD}}$ and reset by the rising edge of $\overline{\mathrm{BUSY}}$

Hyh-Speed 12-Bit A/D Converters With External Reference Input

Figure 9. Slow-Memory Mode Timing Diagram

Figure 10. ROM-Mode Timing Diagram

Figure 11. Power-Supply Grounding Practice

Figure 12. VREFNSS Diode Clamp (See "Reference Input" Text)

(CONFIGUFATIONIS 24-PIN DIP)
Figure 13. MX7672-AD585 Sample-and-Hold Interface

Figure 14. MX7672-HA5320 Sample-and-Hold Interface

High-Speed 12-Bit A/D Converters With External Reference Input

(1) For synchronous $\overline{\mathrm{RD}}$ and CLKIN, the hold settling time allowed for the sample-and-hold is 375 ns (MX76762 103), 600 ns (MX7672 - 05), and $1.5 \mu \mathrm{~s}$ (MX7672_-10). The maximum sampling rate is 125 kHz with a 2.5 MHz clock and 64.5 kHz with a 1 MHz clock, allowing for a $3 \mu \mathrm{~s}$ sample-and-hold acquisition time
Although this circuit works well for the 1 MHz clock rate, a faster sample-and-hold amplifier, such as the HA5320, is recommended at a 2.5 MHz clock rate.
MX7672_03-Figure 14 is the MX7672__03 to HA5320 interface. The maximum sampling rate is 210 kHz with a 4 MHz clock, which allows a $1.5 \mu \mathrm{~s}$ acquisition time. The HA5320 can also be replaced by a HA5330 for higher throughput.

Analog Input Ranges
The MX7672 provides three selectable analog input ranges: 0 V to $+5 \mathrm{~V}, 0 \mathrm{~V}$ to +10 V , and $\pm 5 \mathrm{~V}$. Figure 15 shows
the.configuration for the two analog inputs (AIN1 and AIN2) for these ranges

Figure 16 shows unipolar operatic Figure 16 shows unipolar operation using an MX584 voltage reference configured for -5 V .
Figure 17 shows the nominal input/output transfer function of the MX7672. Code transitions occur halfway between successive integer LSB values. The output coding is binary with $1 \mathrm{LSB}=$ Full Scale (FS)/4096. FS is either +5 V or +10 V , based on the anaiog input configurations

Offset and Full-Scale Adjustment In applications requiring offset and FS range adjustment, use the circuit in Figure 18. Note: The amplifier shown adjusted first Apply $1 / 2 \mathrm{SB}(0.61 \mathrm{mV})$ at the analoginp (AIN1 or AIN2) and adjust the offset of the amplifier until

Figure 15. Analog Input Range Configurations

Figure 16. Unipolar Operation Using an MX584 Reference

Figure 17. MX7672 Ideal Unipolar Transfer Function
\qquad

High-Speed 12-Bit A/D Converters With External Reference Input

the digital output code changes between 00000000 0000 and 000000000001

0 V to +5 V range: $1 / 2 \mathrm{LSB}=0.61 \mathrm{mV}$
$O \mathrm{~V}$ to +10 V range: $1 / 2 \mathrm{LSB}=1.22 \mathrm{mV}$
To adjust the full-scale range, apply FS-3/2LSB (last code ransition) at the analog input and adjust R1 until the transition) at the analog input and adjust R1 until the 111111111111.
O to +5 V range: $\quad \mathrm{FS}-3 / 2 \mathrm{LSB}=4.99817 \mathrm{~V}$
OV to +10 V range: $\mathrm{FS}-3 / 2 \mathrm{LSB}=9.99634 \mathrm{~V}$
Bipolar Operation
The bipolar input range is $\pm 5 \mathrm{~V}$. V IN is applied to AIN1 +5 V to AIN2, and -5 V to VREF. This requires two refer AIN2 input. Figure 19 shows these reference voltages are produced from a MAX675 reference and a MAX400 op amp configured as an inverting amplifier
The ideal input/output transfer characteristic after offse and gain adjustment is shown in Figure 20. The LSB is 244 mV ($10 \mathrm{~V} / 4096$)

The resistors used in bipolar applications should be the same type from the same manufacturer to obtain low emperature dritts. 0.1% resistors are recommended for applications whereoffset and full-scale adjustments mus be made in bipolar circuits. If low tolerances are used arger value potentiometers must be used, which resuit in poor trim resolution and higher temperature drift.

Offset and Gain Adjustmen
In bipolar operation, the offset is trimmed at negative full scale and should always be adjusted first. For offset,

NOTE 1: OVTO +5V RANGE- CONNECT AN2 TO AN1
OV TO + OV RANGE-CONECT AN2TO AGND
(CONFIGURATIONIS 24-PIN DIP)
Figure 18. Unipolar Operation with Gain Adjust
apply -FS/ $2+1 / 2$ LSB $(-4.99878 \mathrm{~V})$ at V IN and adjust the 10k Ω potentiometer (Figure 18) until the output code switches between 000000000000 and 000000000001 .

Gain is adjusted at full scale or bipolar zero. For full-scale adjustment, apply FS/2 - 3/2LSBs (4.99634V) to VIN and adjust the 200Ω potentiometer until the output code switches between 111111111110 and 111111111111.
Alternatively, to adjust gain at bipolar zero, apply -1.22 mV at VIN and adjust the 200Ω potentiometer until the output at $V \mathbb{N}$ and adjus code
0000.

Figure 19. Bipolar Operation with Offset and Gain-Error Adjust

[^0]
High-Speed 12-Bit A/D Converters With External Reference Input

[^1]
[^0]: | Figure 20. $\begin{array}{c}\text { Ideal Input/Output Transfer Characteristic for Bipolar } \\ \text { Operation }\end{array}$ |
 | :---: |

 Figure 20. Ideal Innut/Output Transfer Characteristic for Bipolar
 Operation

[^1]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied 12
 © 1991 Maxim Integrated Products Maxim Integratad Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-Z600 Printed USA

