## FEATURES

Single Supply Operation: 4.5 V to 33 V
Input Common Mode Includes Ground
Output Swings to Ground
High Slew Rate: $3 \mathrm{~V} / \mu \mathrm{s}$
High Gain Bandwidth: 4 MHz
Low Input Offset Voltage
High Open-Loop Gain
No Phase Inversion
Low Cost
APPLICATIONS
Disk Drives
Mobile Phones
Servo Controls
Modems and Fax Machines
Pagers
Power Supply Monitors and Controls
Battery Operated Instrumentation

## GENERAL DESCRIPTION

The OP292/OP492 are low cost general purpose dual and quad operational amplifiers designed for single supply applications and are ideal for +5 volt systems
Fabricated on Analog Devices' CBCMOS process, the OP292/ OP492 series has a PNP input stage that allows the input volt age range to include ground. A BiCMOS output stage enables the output to swing to ground while sinking current
The OP292/OP492 series is unity-gain stable and features an outstanding combination of speed and performance for single or dual supply operation. The OP292/OP492 provide high slew rate, high bandwidth, with open-loop gain exceeding 40,000 and offset voltage under $800 \mu \mathrm{~V}$ (OP292) and 1 mV (OP492). With these combinations of features and low supply current, the OP292/OP492 series is an excellent choice for battery operated applications.
The OP292/OP492 series performance is specified for single or dual supply voltage operation over the extended industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$.
Package options for the OP292 and OP492 include plastic DIP, SO-8 (OP292) and SO-14.

REV. 0
nformation furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for it use, nor for any infringements of patents or other rights of third parties otherwise under any patent or patent rights of Analog Devices.

PIN CONNECTIONS


## OP292/0P492 - SPECIFICATIONS

ELECTRICAL CHARACTERISTICS $\left(@ \mathrm{v}_{\mathrm{S}}=+5 \mathrm{v}, \mathrm{v}_{\mathrm{cm}}=0 \mathrm{v}, \mathrm{v}_{0}=+2 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ uniess otherwise noted)

| Parameter | Symbol | Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT CHARACTERISTICS Offset Voltage OP292 | $\mathrm{V}_{\text {OS }}$ |  |  | 0.1 | 0.8 | mV |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ |  | 0.3 | 1.2 | mV |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ |  | 0.5 | 2.5 | mV |
| OP492 | $\mathrm{v}_{\text {OS }}$ |  |  | 0.1 | , | mV |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ |  | 0.3 | 1.5 | mV |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ |  | 0.5 | 2.5 | mV |
| Input Bias Current | $\mathrm{I}_{\mathrm{B}}$ |  |  | 450 | 700 | nA |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ |  | 0.75 3.0 | 2.5 | ${ }_{\mu \mathrm{A}}$ |
| Input Offset Current | $\mathrm{I}_{\text {OS }}$ | $-40 \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\text {c }}$ |  | 7.0 | 50 | ${ }^{\mu \mathrm{A}} \mathrm{A}$ |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ |  | 100 | 700 | nA |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ |  | 0.4 | 1.2 | $\mu \mathrm{A}$ |
| Input Voltage Range |  |  | 0 |  | 4.0 |  |
| Common-Mode Rejection Ratio | CMRR | $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to 4.0 V | 75 | 95 |  |  |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ | 70 | 93 |  | dB |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ | 65 | 90 |  | dB |
| Large Signal Voltage Gain | $\mathrm{A}_{\mathrm{vo}}$ | $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=0.1 \mathrm{~V}$ to 4 V | 25 | 200 |  | $\mathrm{V} / \mathrm{mV}$ |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ | 10 | 100 |  | $\mathrm{V} / \mathrm{mV}$ |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ | 5 | 50 |  | $\mathrm{V} / \mathrm{mV}$ |
| Offset Voltage Drift Long Term $\mathrm{V}_{\text {OS }}$ Drift Bias Current Drift | $\begin{aligned} & \Delta \mathrm{V}_{\mathrm{oS}} / \Delta \mathrm{T} \\ & \Delta \mathrm{~V}_{\mathrm{os}} / \Delta \mathrm{t} \\ & \Delta \mathrm{I}_{\mathrm{I}} / \Delta \mathrm{T} \end{aligned}$ | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ |  | 2 | 10 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
|  |  | Note 1 |  | 1 |  | $\mu \mathrm{V} / \mathrm{Month}$ |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ |  |  |  | $\mathrm{pA} /{ }^{\circ} \mathrm{C}$ |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ |  | 400 |  | $\mathrm{pA} /{ }^{\circ} \mathrm{C}$ |
| Offset Current Drift | $\Delta \mathrm{I}_{\text {OS }} / \Delta \mathrm{T}$ | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ |  | ${ }_{2}^{1.5}$ |  | ${ }_{\text {pA }}{ }^{\text {p/ } / 2} \mathrm{C}$ |
| OUTPUT CHARACTERISTICS Output Voltage Swing High |  |  |  |  |  |  |
|  | $\mathrm{V}_{\text {OUT }}$ |  |  |  |  |  |
|  |  | $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to GND |  |  |  |  |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ |  | 4.3 |  | V |
|  |  | $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to GND | 3.8 | 4.1 |  | V |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ | 3.7 | 3.9 |  | V |
| Low | $\mathrm{V}_{\text {OUT }}$ | $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to $\mathrm{V}+$ |  | 8 | 20 | mV |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ |  | 12 | 20 | mV |
|  |  | $\mathrm{R}_{\mathrm{I}}=2 \mathrm{k} \Omega$ to $\mathrm{V}+$ |  | 280 | 450 | mV |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ | 5 |  | 550 | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{~mA} \end{aligned}$ |
| POWER SUPPLY | PSRR |  |  |  |  |  |
| Power Supply Rejection Ratio |  | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V} \text { to }+30 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \end{aligned}$ | 7570 | 95 |  | dB |
|  |  |  |  | 90 |  | dB |
| Supply Current Per Amp OP292, OP492 | $\mathrm{I}_{\mathrm{SY}}$ |  |  | 0.8 | 1.2 | mA |
| DYNAMIC PERFORMANCESlew Rate |  |  |  |  |  |  |
|  | SR | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$ | 1 |  |  |  |
|  |  |  |  | 2 |  | V/us |
| Gain Bandwidth Product | GBP |  |  | 4 |  | MHz |
| Phase Margin | $\phi_{\text {m }}$ |  |  | 75 |  | Degrees |
| Channel Separation | CS | $\mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}$ |  | 100 |  |  |
| NOISE PERFORMANCE | $e_{n} \mathrm{p}$-p |  |  |  |  |  |
| Voltage Noise Voltage Noise Density Current Noise Density |  | $\begin{aligned} & 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$ |  | 25 |  | $\mu \mathrm{V}$ p-p |
|  |  |  |  | 15 |  | $\mathrm{nV} / \sqrt{\overline{\mathrm{Hz}}}$ |
|  |  |  |  | 0.7 |  | $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ |

ELECTRICAL CHARACTERISTICS $\left(@ V_{S}= \pm 15, T_{A}=+25^{\circ} \mathrm{Cunless}\right.$ otherwise noted)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter \& Symbol \& Conditions \& Min \& Typ \& Max \& Units \\
\hline \multicolumn{7}{|l|}{INPUT CHARACTERISTICS} \\
\hline Offset Voltage OP292 \& \multirow[t]{6}{*}{\(\mathrm{V}_{\text {Os }}\)} \& \& \& 1.0 \& 2.0 \& mV \\
\hline \multirow[t]{5}{*}{OP292
OP492} \& \& \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) \& \& 1.2 \& 2.5 \& mV \\
\hline \& \& \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\) \& \& 1.5 \& 3 \& mV \\
\hline \& \& \& \& 1.4 \& 2.5 \& mV \\
\hline \& \& \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) \& \& 1.7 \& 2.8 \& mV \\
\hline \& \& \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\) \& \& 2 \& 3 \& mV \\
\hline \multirow[t]{2}{*}{Input Bias Current} \& \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{B}}\)} \& \& \& 375 \& 700 \& nA \\
\hline \& \& \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\) \& \& 0.5 \& 1 \& \(\mu \mathrm{A}\) \\
\hline \multirow[t]{3}{*}{Input Offset Current} \& \multirow[t]{4}{*}{\(\mathrm{I}_{\text {OS }}\)} \& \& \& 7 \& 50 \& nA \\
\hline \& \& \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) \& \& 20 \& 100 \& nA \\
\hline \& \& \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\) \& \& 0.4 \& 1.2 \& \(\mu \mathrm{A}\) \\
\hline Input Voltage Range \& \& Note 1 \& -11 \& \& 11 \& V \\
\hline Common-Mode Rejection Ratio \& \multirow[t]{2}{*}{CMRR} \& \(\mathrm{V}_{\mathrm{CM}}= \pm 11 \mathrm{~V}\) \& 78 \& 100 \& \& dB \\
\hline \& \& \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\) \& 75 \& 95 \& \& dB \\
\hline \multirow[t]{3}{*}{Large Signal Voltage Gain} \& \multirow[t]{3}{*}{\(\mathrm{A}_{\mathrm{vo}}\)} \& \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\) \& 25 \& 120 \& \& \(\mathrm{V} / \mathrm{mV}\) \\
\hline \& \& \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) \& 10 \& 75 \& \& \(\mathrm{V} / \mathrm{mV}\) \\
\hline \& \& \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\) \& \& 60 \& \& \(\mathrm{V} / \mathrm{mV}\) \\
\hline Offset Voltage Drift \& \(\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}\) \& \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\) \& \& 4 \& 10 \& \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Bias Current Drift \& \(\Delta \mathrm{I}_{\mathrm{B}} / \Delta \mathrm{T}\) \& \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\) \& \& 3 \& \& \(\mathrm{pA} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
OUTPUT CHARACTERISTICS \\
Output Voltage Swing
\end{tabular}} \& \multirow[b]{6}{*}{\(\mathrm{V}_{\mathrm{o}}\)

$\mathrm{I}_{\text {SC }}$} \& \multirow[b]{6}{*}{| $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$ |
| :--- |
| Short Circuit to GND |} \& \& \& \& <br>

\hline \& \& \& $\pm 11$ \& $\pm 12.2$ \& \& v <br>
\hline \& \& \& $\pm 10$ \& $\pm 11$ \& \& V <br>
\hline \& \& \& $\pm 13.8$ \& $\pm 14.3$ \& \& V <br>
\hline \& \& \& $\pm 13.5$ \& $\pm 14.0$ \& \& mV <br>
\hline Short Circuit Current Limit \& \& \& 8 \& 10.5 \& \& mA <br>

\hline POWER SUPPLY \& \multirow{3}{*}{PSRR} \& \multirow[b]{4}{*}{$$
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}= \pm 2.25 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \\
& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}
\end{aligned}
$$} \& \& \& \& <br>

\hline Power Supply Rejection Ratio \& \& \& 75 \& 86 \& \& dB <br>
\hline \& \& \& 70 \& 83 \& \& dB <br>
\hline Supply Current Per Amp OP292, OP492 \& $\mathrm{I}_{\text {SY }}$ \& \& \& 1 \& 1.4 \& mA <br>
\hline \multirow[t]{3}{*}{DYNAMIC PERFORMANCE

Slew Rate} \& \multirow{3}{*}{SR} \& \multirow{4}{*}{$$
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\
& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}
\end{aligned}
$$} \& \multirow{6}{*}{\[

$$
\begin{aligned}
& 2.5 \\
& 2
\end{aligned}
$$
\]} \& \& \& <br>

\hline \& \& \& \& 4 \& \& V/us <br>
\hline \& \& \& \& 3 \& \& V/us <br>
\hline Gain Bandwidth Product \& GBP \& \& \& 4 \& \& MHz <br>
\hline Phase Margin \& $\phi_{\text {m }}$ \& \& \& 75 \& \& Degrees <br>
\hline Channel Separation \& CS \& $\mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}$ \& \& 100 \& \& dB <br>

\hline \multirow[t]{4}{*}{| NOISE PERFORMANCE |
| :--- |
| Voltage Noise Voltage Noise Density Current Noise Density |} \& \multirow[b]{4}{*}{$\mathrm{e}_{\mathrm{n}} \mathrm{p}-\mathrm{p}$

$\mathrm{e}_{\mathrm{n}}$

$\mathrm{i}_{\mathrm{n}}$} \& \multirow{4}{*}{$$
\begin{aligned}
& 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\
& \mathrm{f}=1 \mathrm{kHz}
\end{aligned}
$$} \& \& \& \& <br>

\hline \& \& \& \& 25 \& \& $\mu \mathrm{V}$ p-p <br>
\hline \& \& \& \& 15 \& \& $\mathrm{nV} / 2 \overline{\mathrm{~Hz}}$ <br>
\hline \& \& \& \& 0.7 \& \& $\mathrm{pA} / \sqrt{\overline{\mathrm{Hz}}}$ <br>
\hline
\end{tabular}

## NOTES

${ }^{1}$ Input voltage range is guaranteed by CMRR tests.
Specifications subject to change without notice.

## OP292/0P492

## WAFER TEST LIMITS (@ $v_{S}=+5.0 \mathrm{v}, \mathrm{v}_{\mathrm{cm}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

| Parameter | Symbol | Conditions | Limit | Units |
| :---: | :---: | :---: | :---: | :---: |
| Offset Voltage | $\mathrm{V}_{\text {OS }}$ |  | $\pm 600$ | $\mu \mathrm{V}$ max |
| Input Bias Current | $\mathrm{I}_{\text {B }}$ |  | 700 | $n A \max$ |
| Input Offset Current | $\mathrm{I}_{\text {OS }}$ |  | 50 | $n \mathrm{~A}$ max |
| Input Voltage Range ${ }^{1}$ | $\mathrm{V}_{\mathrm{CM}}$ |  | 0/4 | V min/V max |
| Common-Mode Rejection | CMRR | $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to 4.0 V | 75 | dB min |
| Power Supply Rejection Ratio | PSRR | $\mathrm{V}= \pm 4.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ | 75 | dB min |
| Large Signal Voltage Gain | $\mathrm{A}_{\mathrm{VO}}$ | $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=0.1 \mathrm{~V}$ to 4 V | 25 | $\mathrm{V} / \mathrm{mV}$ min |
| Output Voltage | $\mathrm{V}_{\mathrm{O}}$ | $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ | 3.8 | $V$ min |
| Supply Current per Amp OP292, OP492 | $\mathrm{I}_{\text {SY }}$ | $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{L}=$ Open | 1.2 | $m A$ max |

Electrical tests and wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing ${ }^{\text {'Guaranteed by CMR test. }}$
Specifications subject to change without notice.


| Package Type | $\boldsymbol{\theta}_{\mathbf{J A}}{ }^{\mathbf{3}}$ | $\boldsymbol{\theta}_{\mathbf{J C}}$ | Units |
| :--- | :--- | :--- | :--- |
| 8-Pin Plastic DIP (P) | 103 | 43 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| 14-Pin Plastic DIP (P) | 83 | 39 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| 8-Pin SO (S) | 158 | 43 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| 14-Pin SO (S) | 120 | 36 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

Absolute maximum ratings apply to both DICE and packaged parts, unless 'Absolute maxim
${ }^{2}$ For supply voltages less than +36 V , the absolute maximum input voltage is equal to the supply voltage.
${ }^{3} \theta_{\mathrm{JA}}$ is specified for the worst case conditions, i.e., $\theta_{\mathrm{JA}}$ is specified for device in socket for P-DIP package; $\theta_{J A}$ is specified for device soldered in circuit board for SOIC package.

ORDERING GUIDE

| Model | Temperature Range | Package Option |
| :--- | :--- | :--- |
| OP292GP | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\mathrm{N}-8$ |
| OP292GS | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | SO-8 |
| OP492GP | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\mathrm{N}-14$ |
| OP492GS | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | SO-14 |
| OP292/492GBC | $+25^{\circ} \mathrm{C}$ | DICE |

DICE CHARACTERISTICS


OP292 Die Size $0.040 \times 0.057$ Inch, 2,280 Sq. Mils Substrate Connected to $V+$, Number of Transistors: Bipolar 47, MOSFET 5


OP492 Die Size $0.057 \times 0.068$ Inch, 3,876 Sq. Mils Substrate Connected to $V+$, Number of Transistors: Bipolar 91, MOSFET 9



Figure 1. OP292 Input Offset Voltage Distribution a +5 V


Figure 2. OP292 Input Offset Voltage Distribution (a) $\pm 15 \mathrm{~V}$


Figure 3. OP292 Temperature Drift (TCV ${ }_{\text {OS }}$ ) Distribution (a) $+5 V$


Figure 4. OP492 Input Offset Voltage Distribution (a +5 V


Figure 5. OP492 Input Offset Voltage Distribution (i) $\pm 15 \mathrm{~V}$


Figure 6. OP492 Temperature Drift (TCV ${ }_{\text {OS }}$ ) Distribution $a+5 v$

## OP292/0P492



Figure 7. OP292 Temperature Drift ( $T C V_{\text {os }}$ ) Distribution a $\pm 15 \mathrm{~V}$


Figure 8. OP292 Open-Loop Gain vs. Temperature $(\bar{a}+5 \mathrm{~V}$


Figure 9. OP292 Open-Loop Gain vs. Temperature (ii $\pm 15 \mathrm{~V}$


Figure 10. OP492 Temperature Drift ( $T_{C V}$ OS Distribution (a) $\pm 15 \mathrm{~V}$


Figure 11. OP492 Open-Loop Gain vs. Temperature (a) +5 V


Figure 12. OP492 Open-Loop Gain vs. Temperature (a) $\pm 15 \mathrm{~V}$


Figure 13. OP292 Supply Current per Amplifier vs. Temperature


Figure 14. OP292 Slew-Rate vs. Temperature


Figure 15. OP292/OP492 Open-Loop Gain and Phase vs. Frequency (a) +5 V


Figure 16. OP492 Supply Current per Amplifier vs. Temperature


Figure 17. OP492 Slew-Rate vs. Temperature


Figure 18. OP292/OP492 Open-Loop Gain/Phase vs. Frequency (a) $\pm 15 \mathrm{~V}$

## OP292/0P492



Figure 19. OP292/OP492 Closed-Loop Gain/Phase vs. Frequency (a +5 V


Figure 20. OP292/OP492 CMR vs. Frequency +5 V


Figure 21. OP292/OP492 PSR vs. Frequency (i) +5 V


Figure 22. OP292/OP492 Closed-Loop Gain/Phase vs. Frequency (a) $\pm 15 \mathrm{~V}$


Figure 23. OP292/OP492 CMR vs. Frequency $\pm 15 \mathrm{~V}$


Figure 24. OP292/OP492 PSR vs. Frequency ( 1 I $\pm 15 \mathrm{~V}$


Figure 25. OP292/OP492 V $V_{\text {OUT }}$ Swing vs. Temperature (a) +5 V


Figure 26. OP292/OP492 Input Bias Current vs. Temperature $a+5 \mathrm{~V}$


Figure 27. OP292/OP492 Channel Separation


Figure 28. OP292/OP492 $V_{\text {OUT }}$ Swing vs. Temperature (a) $\pm 15 \mathrm{~V}$


Figure 29. OP292/OP492 Input Bias Current vs. Temperature (a) $\pm 15 \mathrm{~V}$


Figure 30. OP292/OP492 $I_{B}$ Current vs. Common Mode Voltage

## OP292/0P492



Figure 31. Voltage Noise Density

## APPLICATION INFORMATION

## phase reversal

The OP492 has built-in protection against phase reversal when the input voltage goes to either supply rail. In fact it is safe for the input to exceed either supply rail by up to 0.6 V with no risk of phase reversal. However, the input should not go beyond the positive supply rail by more than 0.9 V , otherwise the output will reverse phase. If this condition can occur, the problem can be fixed by adding a $5 \mathrm{k} \Omega$ current limiting resistor in series with the input pin. With this addition, the input can go to more than 5 V beyond the positive rail without phase reversal.
An input voltage that is as much as 5 V below the negative rail will not result in phase reversal.


Figure 32. Output Can Reverse Phase If Input Exceeds the Positive Supply ( $\mathrm{V}+$ ) by More Than 0.9 V


Figure 33. No Negative Rail Phase Reversal, Even with Input Signal at 5 V Below Ground

Power Supply Considerations
The OP292/OP492 are designed to operate equally well at single +5 V or $\pm 15 \mathrm{~V}$ supplies. The lowest supply voltage recommended is 4.5 V .
It is a good design practice to bypass the supply pins with a $0.1 \mu \mathrm{~F}$ ceramic capacitor. It helps improve filtering of high frequency noise.
For dual supply operation, the negative supply ( $\mathrm{V}-$ ) must be applied at the same time, or before $\mathrm{V}+$. If $\mathrm{V}+$ is applied before $\mathrm{V}-$, or in the case of a loss of V - supply, while either input is connected to ground or other low impedance source, excessive input current may result. Potentially damaging levels of input current can destroy the amplifier. If this condition can exist, simply add a 1 k or larger resistor in series with the input to eliminate the problem.

TYPICAL APPLICATIONS
Direct Access Arrangement for Telephone Line Interface Figure 34 shows a +5 V-only transmit/receive telephone line interface for a modem circuit. It allows full duplex transmission of modem signals on a transformer-coupled $600 \Omega$ line in a differential manner. The transmit section gain can be set for the specific modem device output. Similarly the receive amplifier gain can be appropriately selected based on the modem device input requirements. The circuit operates on a single +5 V supply. The standard value resistors allow the use of a SIP packaged resistor array; this, coupled with a quad op amp in a single package, offers a compact, low part-count solution.


Figure 34. A Universal Direct Access Arrangement for Telephone Line Interface

## OP292/0P492

## A Single Supply Instrumentation Amplifier

A low cost single supply instrumentation amplifier can be built as shown in Figure 35. The circuit utilizes two op amps to form a high input impedance differential amplifier. Gain can be set by selecting resistor $\mathrm{R}_{\mathrm{G}}$ which can be calculated using the transfer function equation. Normally, $\mathrm{V}_{\text {Reference }}$ is set to 0 V . Then the output voltage is a function of the gain times the differential input voltage. However, the output can be offset by setting $V_{\text {Reference }}$ from 0 V to 4 V , as long as the input commonmode voltage of the amplifier is not exceeded.


Figure 35. A Single Supply Instrumentation Amplifier
In this configuration, while the output can swing to near zero volts, one needs to be careful because the input's common-mode voltage range cannot operate to zero volts. This is because of the limitation of the circuit configuration where the first amplifier must be able to swing below ground in order to attain a 0 V common-mode voltage, which it cannot do. Depending on the gain of the instrumentation amplifier, the input common-mode extends to within about 0.3 V of zero. One can easily calculate the worst-case common-mode limit for a given gain.

## DAC Output Amplifie

The OP292/OP492 are ideal for buffering the output of single supply D/A converters. Figure 36 shows a typical amplifier used to buffer the output of a CMOS DAC that is connected for single supply operation. To do that, the normally current output 12-bit CMOS DAC ( $\mathrm{R}-2 \mathrm{R}$ ladder type) is connected backward to produce a voltage output. This operating configuration necessitates a low voltage reference. In this case, a 1.235 V low power reference is used. The relatively high output impedance ( 10 k ) is buffered by the OP292 and at the same time gained up to a much more usable level. The potentiometer provides an accurate gain trim for a 4.095 V full-scale, allowing 1 mV increment per LSB of control resolution.
The DAC8043 device comes in an 8-pin DIP package providing a cost-effective, compact solution to a 12 -bit analog channel.


Figure 36. A 12-Bit Single-Supply DAC With Serial Bus Control

## A $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ Single-Supply Notch Filter

Figure 37 shows a notch filter that achieves nearly 30 dB of 60 Hz rejection while powered by only a single 12 V supply. The circuit also works well on +5 V systems. The filter utilizes a twin-T configuration whose frequency selectivity depends heavily on the relative matching of the capacitors and resistors in the twin-T section. Mylar is a good choice for the twin-T's capacitors, and the relative matching of the capacitors and resistors determines the filter's passband symmetry. Using $1 \%$ resistors and $5 \%$ capacitors produces satisfactory results
The amount of rejection and the Q of the filter is solely deter mined by one resistor, and is shown in the table. The bottom amplifier is used to split the supply to bias the amplifier to midlevel. The circuit can be modified to reject 50 Hz by simply changing the resistors in the twin- T section ( R 1 through R 4 ) from 2.67 k to 3.16 k , and change R 5 to $1 / 2$ of 3.16 k . For best results, the common value resistors can be from a resistor array for optimum matching characteristics.


Figure 37. A Single-Supply $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$. Notch Filter

## OP292/0P492



Figure 38. A 4-Pole Bessel Low Pass Filter Using SallenKey Topology

## A 4-Pole Bessel Low-Pass Filte

The linear phase filter in Figure 38 is designed to roll off at a voiceband cutoff frequency of 3.6 kHz . The 4 poles are formed by two cascading stages of two-pole Sallen-Key filters.

## A Low Cost, Linearized Thermistor Amplifier

An inexpensive thermometer amplifier circuit can be implemented using low cost thermistors. One such implementation is shown in Figure 39. The circuit measures temperature over the range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ to an accuracy of $\pm 0.3^{\circ} \mathrm{C}$ as the linearization circuit works well within a narrow temperature range. However, it can measure higher temperature but at a slightly reduced accuracy. To achieve the aforementioned accuracy, the thermistor's nonlinearity must be corrected. This is done by connecting the thermistor in parallel with the 10 k in the feedback loop of the first stage amplifier. A constant operating current of $281 \mu \mathrm{~A}$ is supplied by the resistor R1 with the +5 V reference from the REF-195 such that the thermistor's selfheating error is kept below $0.1^{\circ} \mathrm{C}$.
In many cases, the thermistor is placed some distance from the signal conditioning circuit. Under this condition, a $0.1 \mu \mathrm{~F}$ capacitor placed across R 2 will help to suppress noise pickup.
This linearization network creates an offset voltage which is corrected by summing a compensating current with potentiometer Pl. The temperature dependent signal is amplified by the second stage, producing a transfer coefficient of $-10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ at the output.
To calibrate, a precision decade box can be used in place of the thermistor. For $0^{\circ} \mathrm{C}$ trim, the decade box is set to 32.650 k , and P 1 is adjusted until the circuit's output reads 0 V . To trim the circuit at the full-scale temperature of $70^{\circ} \mathrm{C}$, the decade box is then set to 1.752 k and P 2 is adjusted until the circuit reads -0.70 V .


Figure 39. A Low Cost Linearized Thermistor Amplifier

## A Single-Supply Ultrasonic Clamping/Limiting Receiver

 AmplifierFigure 40 shows an ultrasonic receiver amplifier using the nonlinear impedance of low cost diodes to effectively control the gain for wide dynamic range. This circuit amplifies a 40 kHz ultrasonic signal through a pair of low cost clamping amplifiers before feeding a bandpass filter to extract a clean 40 kHz signal for processing.
The signal is ac-coupled into the false-ground bias node by virtue of the capacitive piezoelectric sensing element. Rather than using an amplifier to generate a supply splitting bias, the false ground voltage is generated by a low cost resistive voltage divider.
Each amplifier stage provides ac gain while passing on the dc self-bias. As long as the output signal at each stage is less than a diode's forward voltage, each amplifier has unrestricted gain to amplify low level signals. However, as the signal strength increases, the feedback diodes begin to conduct, shunting the feedback current, and thus reducing the gain. Although distort ing the waveform, the diodes effectively maintain a relatively constant amplitude even with large signals that otherwise would saturate the amplifier. In addition, this design is considerably more stable than the feedback type AGC.
The overall circuit has a gain range from -2 to -400 , where the inversion comes from the bandpass filter stage. Operating with a $Q$ of 5 , the filter restores a clean, undistorted signal to the output. The circuit also work well with 5 V supply systems


The OP292/OP492 have excellent overload recovery characteristics, making them suitable for precision comparator applications. Figure 41 shows the saturation recovery characteristics of the OP492. The amplifier exhibits very little propagation delay. The amplifier compares a signal precisely to less than 0.5 mV offset error.


Figure 41. The OP492 Has Fast Overload Recovery for Comparator Applications

Programmable Precision Window Comparator
The OP292/OP492 can be used for precise level detection such as in test equipment where a signal is measured within a range. Figure 42 shows such an implementation. The threshold voltage level is set by a pair of 12 -bit D/A converters. The DACs have serial interface thus minimizing interconnection requirements.
The DAC8512 has a control resolution of $1 \mathrm{mV} / \mathrm{bit}$. Thus for 5 V supply operation, maximum DAC output is 4.095 V . However, the OP292 will accept a maximum input of 4.0 V .

## OP292/0P492

$\star$ OP292 SPICE Macro-model Rev. A, 6/93
$\star \quad$ ARG / PMI
*

* Copyright 1993 by Analog Devices
* Refer to "README.DOC" file for License Statement. Use of * this model indicates your acceptance of the terms and pro-
${ }^{\star}$ visions in the License Statement.
* 
* Node assignments
$\star$
$\star$
$\star$
$\star$
$\star$
$\star$
$\star$
$\star$
* INPUT STAGE AND POLE AT 40 MHz

* *OLE AT 100 MHz

G2 $\quad 98 \quad 16(15,30) 1$
$\begin{array}{llll}\text { R12 } & 16 & 98 & 1\end{array}$
$\begin{array}{llll}\text { C6 } & 16 & 98 & 1.592 \mathrm{E}-9\end{array}$

* OUTPUT STAGE
$\begin{array}{llll}\text { RS1 } & 99 & 30 & 1 \mathrm{E} 6 \\ \text { RS2 } & 30 & 50 & 1 \mathrm{E} 6\end{array}$
ISY $99 \quad 50 \quad .44 \mathrm{E}-3$
G3 $31 \quad 50 \quad \operatorname{POLY}(1)(16,30)-1.635 E-64 E-6$
$\begin{array}{llll}\text { R16 } & 31 & 50 & 1 E 6\end{array}$
DCL $50 \quad 31$ DZ
I2 $\quad 99 \quad 32 \quad 250 \mathrm{E}-6$
$\begin{array}{llll}\text { RCL } & 33 & 50 & 56\end{array}$
$\begin{array}{lllll}\mathrm{Ml} & 32 & 31 & 50 & 50\end{array} \quad \mathrm{MN} \mathrm{L}=9 \mathrm{E}-6 \mathrm{~W}=1000 \mathrm{E}-6 \mathrm{AD}=15 \mathrm{E}-9 \mathrm{AS}=15 \mathrm{E}-9$
$\begin{array}{lllll}\mathrm{M} 2 & 34 & 31 & 50 & 50\end{array} \mathrm{MN} \mathrm{L}=9 \mathrm{E}-6 \mathrm{~W}=1000 \mathrm{E}-6 \mathrm{AD}=15 \mathrm{E}-9 \mathrm{AS}=15 \mathrm{E}-9$
$\begin{array}{llll}\mathrm{CC} & 31 & 32 & 14 \mathrm{E}-12 \\ \mathrm{Q} 3 & 99 & 32 & 34\end{array}$
$\begin{array}{lllll}\text { Q4 } & 39 & 32 & 34 & \text { QNA } \\ \text { Q4 } & 32 & 34 & \text { QPA }\end{array}$
$\begin{array}{lllll}\text { Q5 } & 31 & 33 & 50 & \text { QNA }\end{array}$
. MODEL QNA NPN $(\mathrm{IS}=1.19 \mathrm{E}-16 \mathrm{BF}=253 \mathrm{NF}=0.99 \mathrm{VAF}=193 \mathrm{IKF}=2.76 \mathrm{E}-3$
$+\mathrm{ISE}=2.57 \mathrm{E}-13 \mathrm{NE}=5 \mathrm{BR}=0.4 \mathrm{NR}=0.988 \mathrm{VAR}=15 \mathrm{IKR}=1.465 \mathrm{E}-4$
$+\mathrm{ISC}=6.9 \mathrm{E}-16 \mathrm{NC}=0.99 \mathrm{RB}=2.0 \mathrm{E} 3 \mathrm{IRB}=7.73 \mathrm{E}-6 \mathrm{RBM}=132.8 \mathrm{RE}=4 \mathrm{RC}=209$
$+\mathrm{CJE}=2.1 \mathrm{E}-13 \mathrm{VJE}=0.573 \mathrm{MJE}=0.364 \mathrm{FC}=0.5 \mathrm{CJC}=1.64 \mathrm{E}-13 \mathrm{VJC}=0.534 \mathrm{MJC}=0.5$
$+\mathrm{CJS}=1.37 \mathrm{E}-12 \mathrm{VJS}=0.59 \mathrm{MJS}=0.5 \mathrm{TF}=0.43 \mathrm{E}-9 \mathrm{PTF}=30$ )
. MODEL QPA PNP(IS $=5.21 \mathrm{E}-17 \mathrm{BF}=131 \mathrm{NF}=0.99 \mathrm{VAF}=62 \mathrm{IKF}=8.35 \mathrm{E}-4$
$+\mathrm{ISE}=1.09 \mathrm{E}-14 \mathrm{NE}=2.61 \mathrm{BR}=0.5 \mathrm{NR}=0.984 \mathrm{VAR}=15 \mathrm{IKR}=3.96 \mathrm{E}-5$
$+\mathrm{ISC}=7.58 \mathrm{E}-16 \mathrm{NC}=0.985 \mathrm{RB}=1.52 \mathrm{E} 3 \mathrm{IRB}=1.67 \mathrm{E}-5 \mathrm{RBM}=368.5 \mathrm{RE}=6.31 \mathrm{RC}=354.4$
$+\mathrm{CJE}=1.1 \mathrm{E}-13 \mathrm{VJE}=0.745 \mathrm{MJE}=0.33 \mathrm{FC}=0.5 \mathrm{CJC}=2.37 \mathrm{E}-13 \mathrm{VJC}=0.762 \mathrm{MJC}=0.4$
$+\mathrm{CJS}=7.11 \mathrm{E}-13 \mathrm{VJS}=0.45 \mathrm{MJS}=0.412 \mathrm{TF}=1.0 \mathrm{E}-9 \mathrm{PTF}=30$ )
.MODEL MN NMOS(LEVEL $=3 \mathrm{VTO}=1.3 \mathrm{RS}=0.3 \mathrm{RD}=0.3$
$+\mathrm{TOX}=8.5 \mathrm{E}-8 \mathrm{LD}=1.48 \mathrm{E}-6 \mathrm{WD}=1 \mathrm{E}-6 \mathrm{NSUB}=1.53 \mathrm{E} 16 \mathrm{UO}=650 \mathrm{DELTA}=10 \mathrm{VMAX}=2 \mathrm{E} 5$
$+\mathrm{XJ}=1.75 \mathrm{E}-6 \mathrm{KAPPA}=0.8 \mathrm{ETA}=0.066 \mathrm{THETA}=0.01 \mathrm{TPG}=1 \mathrm{CJ}=2.9 \mathrm{E}-4 \mathrm{~PB}=0.837$
$+\mathrm{MJ}=0.407 \mathrm{CJSW}=0.5 \mathrm{E}-9 \mathrm{MJSW}=0.33$ )
. MODEL QP $\operatorname{PNP}(B F=61.5)$
.MODEL DX D
. MODEL DZ $\mathrm{D}(\mathrm{BV}=3.6)$
.ENDS OP292


## OP292/0P492

| * OP492 SPICE Macro-model | Rev. A, 6/93 |
| :--- | :--- |
| * | ARG / PMI |

* Copyright 1993 by Analog Devices
* Refer to "README.DOC" file for License Statement. Use of
* this model indicates your acceptance of the terms and pro-
* visions in the License Statement.
* Node assignments

| * | noninverting input |
| :---: | :---: |
| * | inverting input |
| * | positive supply |
| * | gative sup |
| * | output |
|  |  |
| .SUBCKT OP492 | $\begin{array}{lllll}2 & 1 & 99 & 50 & 34\end{array}$ |
|  |  |
| INPUT STAGE | D POLE AT 40 |

Il $\quad 99 \quad 4 \quad 50 \mathrm{E}-6$

| IOS | 29 | 4 | $50 \mathrm{E}-6$ |
| :--- | :--- | :--- | :--- |
| IOS | 2 | 1 | $10 \mathrm{E}-9$ |

EOS $23 \quad 3 \quad \operatorname{POLY}(1)(21,30) 1.5 E-375$

| CIN | 1 | 2 | $3 \mathrm{E}-12$ |
| :--- | :--- | :--- | :--- |

$\begin{array}{lllll}\mathrm{Q} 1 & 5 & 1 & 7 & \mathrm{QP}\end{array}$

| Q 2 | 6 | 3 | 8 | QP |
| :--- | :--- | :--- | :--- | :--- |

R3 $5 \quad 50 \quad$ 2E3
$\begin{array}{llll}\mathrm{R} 4 & 6 & 50 & \text { 2E3 }\end{array}$
$\begin{array}{llll}\text { R5 } & 4 & 7 & 966 \\ \text { R6 } & 4 & 8 & 966\end{array}$

| R6 | 4 | 8 | 966 |
| :--- | :--- | :--- | :--- |
| C 1 | 5 | 6 | $.995 \mathrm{E}-1$ |

* GAIN STAGE

EREF $98 \quad 0 \quad(30,0) \quad 1$
$\begin{array}{lllll}\text { G1 } & 98 & 9 & (5,6) & 500 \mathrm{E}-6\end{array}$
$\begin{array}{llll}\text { R7 } & 9 & 98 & 210.819 \mathrm{E} 3\end{array}$
D1 $9 \quad 10$ DX
D2 $11 \quad 9 \quad$ DX
$\begin{array}{llll}\text { V1 } & 99 & 10 & .6\end{array}$
V2 $\quad 11 \quad 50 \quad .6$

* ZERO/POLE AT $6 \mathrm{MHz} / 12 \mathrm{MHz}$

E1 $\quad 12 \quad 98 \quad(9,30) \quad 2$

| R8 | 12 | 13 | 1 |
| :--- | :--- | :--- | :--- |
| R9 | 13 | 98 | 1 |

$\begin{array}{llll}\mathrm{C} 3 & 12 & 13 & 26.526 \mathrm{E}-9\end{array}$

* ZERO AT 15 MHz
$\begin{array}{lllll}\mathrm{E} 2 & 14 & 98 & (13,30) & \text { 1E6 }\end{array}$
$\begin{array}{llll}\text { R10 } & 14 & 15 & \text { 1E6 }\end{array}$
$\begin{array}{llll}\text { R11 } & 15 & 98 & 1\end{array}$
$\begin{array}{llll}\mathrm{C} 4 & 14 & 15 & 10.610 \mathrm{E}-15\end{array}$
* COMMON MODE STAGE WITH ZERO AT 40 kHz
$\begin{array}{lllllllll}\star & & \\ \text { ECM } & 20 & 98 & \operatorname{POLY}(2) & (1,30) & (2,30) & 0 & 0.5 & 0.5 \\ \text { R20 } & 20 & 21 & \text { lE6 } & & & & & \end{array}$
$\begin{array}{llll}\text { R20 } & 20 & 21 & 1 \mathrm{E} 6 \\ \mathrm{R} 21 & 21 & 98 & 1\end{array}$
C5 $\quad 20 \quad 21 \quad 3.979 \mathrm{E}-12$
* 
* POLE AT 100 MHz
$\begin{array}{lllll}\text { G2 } & 98 & 16 & (15,30) & 1\end{array}$
$\begin{array}{llll}\text { R12 } & 16 & 98 & 1\end{array}$
$\begin{array}{llll}\text { C6 } & 16 & 98 & 1.592 \mathrm{E}-9\end{array}$
* OUTPUT STAGE
$\begin{array}{llll}\text { RS1 } & 99 & 30 & \text { 1E6 }\end{array}$
$\begin{array}{llll}\text { RS2 } & 30 & 50 & \text { IE6 }\end{array}$
$\begin{array}{llll}\text { ISY } & 99 & 50 & .44 \mathrm{E}-3\end{array}$
$\begin{array}{llll}\text { R16 } & 31 & 50 & \text { 1E6 }\end{array}$
DCL $\quad 50 \quad 31 \quad$ DZ
$\begin{array}{llll}\text { I2 } & 99 & 32 & 250 \mathrm{E}-6\end{array}$
$\begin{array}{llllllllll}\text { RCL } & 33 & 50 & 56 & & & & & \\ \text { M1 } & 32 & 31 & 50 & 50 & \text { MN } & \mathrm{L}=9 \mathrm{E}-6 & \mathrm{~W}=1000 \mathrm{E}-6 & \mathrm{AD}=15 \mathrm{E}-9 & \mathrm{AS}=15 \mathrm{E}-9\end{array}$
$\begin{array}{llllllllll}\text { M1 } & 32 & 31 & 50 & 50 & \text { MN } & \mathrm{L}=9 \mathrm{E}-6 & \mathrm{~W}=1000 \mathrm{E}-6 & \mathrm{AD}=15 \mathrm{E}-9 & \mathrm{AS}=15 \mathrm{E}-9 \\ \text { M2 } & 34 & 31 & 50 & 50 & \text { MN } & \mathrm{L}=9 \mathrm{E}-6 & \mathrm{~W}=1000 \mathrm{E}-6 & \mathrm{AD}=15 \mathrm{E}-9 & \mathrm{AS}=15 \mathrm{E}-9\end{array}$
$\begin{array}{llll}\text { CC } & 31 & 32 & 14 \mathrm{E}-12 \\ \text { Q3 } & 99 & 32 & 34 \text { QNA }\end{array}$

| Q4 | 33 | 32 | 34 |
| :--- | :--- | :--- | :--- |

Q5 $\quad 31 \quad 33 \quad 50$ QNA
.MODEL QNA NPN(IS = 1.19E-16 BF=253 NF=0.99 VAF $=193 \mathrm{IKF}=2.76 \mathrm{E}-3$
$+\mathrm{ISE}=2.57 \mathrm{E}-13 \mathrm{NE}=5 \mathrm{BR}=0.4 \mathrm{NR}=0.988 \mathrm{VAR}=15 \mathrm{IKR}=1.465 \mathrm{E}-4$
$+\mathrm{ISC}=6.9 \mathrm{E}-16 \mathrm{NC}=0.99 \mathrm{RB}=2.0 \mathrm{E} 3 \mathrm{IRB}=7.73 \mathrm{E}-6 \mathrm{RBM}=132.8 \mathrm{RE}=4 \mathrm{RC}=209$
$+\mathrm{CJE}=2.1 \mathrm{E}-13 \mathrm{VJE}=0.573 \mathrm{MJE}=0.364 \mathrm{FC}=0.5 \mathrm{CJC}=1.64 \mathrm{E}-13 \mathrm{VJC}=0.534 \mathrm{MJC}=0.5$
$+\mathrm{CJS}=1.37 \mathrm{E}-12 \mathrm{VJS}=0.59 \mathrm{MJS}=0.5 \mathrm{TF}=0.43 \mathrm{E}-9 \mathrm{PTF}=30$ )
. MODEL QPA PNP(IS=5.21E-17 BF=131 NF=0.99 VAF=62 IKF=8.35E-4
$+\mathrm{ISE}=1.09 \mathrm{E}-14 \mathrm{NE}=2.61 \mathrm{BR}=0.5 \mathrm{NR}=0.984 \mathrm{VAR}=15 \mathrm{IKR}=3.96 \mathrm{E}-5$
$+\mathrm{ISC}=7.58 \mathrm{E}-16 \mathrm{NC}=0.985 \mathrm{RB}=1.52 \mathrm{E} 3 \mathrm{IRB}=1.67 \mathrm{E}-5 \mathrm{RBM}=368.5 \mathrm{RE}=6.31 \mathrm{RC}=354.4$
$+\mathrm{CJE}=1.1 \mathrm{E}-13 \mathrm{VJE}=0.745 \mathrm{MJE}=0.33 \mathrm{FC}=0.5 \mathrm{CJC}=2.37 \mathrm{E}-13 \mathrm{VJC}=0.762 \mathrm{MJC}=0.4$
$+\mathrm{CJS}=7.11 \mathrm{E}-13 \mathrm{VJS}=0.45 \mathrm{MJS}=0.412 \mathrm{TF}=1.0 \mathrm{E}-9 \mathrm{PTF}=30$ )
. MODEL MN NMOS (LEVEL $=3$ VTO $=1.3 \mathrm{RS}=0.3 \mathrm{RD}=0.3$
$+\mathrm{TOX}=8.5 \mathrm{E}-8 \mathrm{LD}=1.48 \mathrm{E}-6 \mathrm{WD}=1 \mathrm{E}-6 \mathrm{NSUB}=1.53 \mathrm{E} 16 \mathrm{UO}=650 \mathrm{DELTA}=10 \mathrm{VMAX}=2 \mathrm{E} 5$
$+\mathrm{XJ}=1.75 \mathrm{E}-6 \mathrm{KAPPA}=0.8 \mathrm{ETA}=0.066 \mathrm{THETA}=0.01 \mathrm{TPG}=1 \mathrm{CJ}=2.9 \mathrm{E}-4 \mathrm{~PB}=0.837$
$+\mathrm{MJ}=0.407 \mathrm{CJSW}=0.5 \mathrm{E}-9 \mathrm{MJSW}=0.33$ )
MODEL QP PNP( $\mathrm{BF}=61.5$ )
MODEL DX D
.MODEL DZ D(BV=3.6)
.ENDS OP492

## OP292/0P492

OP292/OP492 SPICE


## OP292/0P492

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm)


