SIEMENS

PLL with $\mathrm{I}^{2} \mathrm{C}$ Bus for

SDA 2121-2
AM/FM Receivers

Preliminary Data

CMOS IC

Features

- High input sensitivity (50 mV rms on FM and 30 mV rms on AM)
- High input frequencies (150 MHz on FM and 25 MHz on AM)
- Extremely fast phase detector with very short anti-backlash pulses
- $\mathrm{I}^{2} \mathrm{C}$ bus
- Large divider rations: - 16 Bit N divider
- 16 Bit R divider
- Divider factor without vacancy OSC IN 2-65535

AMIN 2-65535
FM IN /2 $2-65535$

- Adjustable raster width ($<1 \mathrm{kHz}$ for $\mathrm{AM},<12.5 \mathrm{kHz}$ for FM) ${ }^{*}$
- Two-pin oscillator provides connection of a piezoelectric crystal for reference frequency generation
- Switchable phase detector polarity
- Switchable phase detector current
- One phase detector output each for FM and AM with the corresponding analog phase detector outputs
- Open drain switching outputs for 10 V

Type	Ordering Code	Package
SDA 2121-2	Q67100-H5025	P-DIP-20
SDA 2121-2X	Q67100-H5026	P-DSO-20

Raster width = Input frequency / divider factor
[On FMIN input frequency / 2 is to be used due to the prescaler]

The SDA 2121-2 is an integrated circuit in CMOS technology which has been especially designed for application in radio equipment.
The SDA 2121-2 is a complex PLL component in CMOS technology for processor controlled frequency synthesis.
Function and dividing ratios are selected via an $\mathrm{I}^{2} \mathrm{C}$ bus interface (licensed by Philips) at pins SCL, SDA and AO. The chip address is set via address input AO. Thus it is possible to address two components via the $I^{2} \mathrm{C}$ bus. The reference frequency can be applied at input OSC IN or it can be generated internally by a piezoelectric crystal. Its maximum value is 15 MHz . The VCO frequency is applied at input FM or AM respectively. Its maximum value is 150 MHz at the FM input and 25 MHz at the AM input. The FM input signal is divided by two by an asynchronous prescaler,
Outputs PDFM and PDAM supply the phase detector signal with especially short antibacklash pulses to neutralize even the smallest phase deviations. Polarity and current of the PD outputs can be switched. The component also has corresponding analog phase detector outputs and lock-detect output (LD).
Additional outputs are the open-drain switching outputs (SA 1, 2, 3, AM/FM) with a dielectric strength of 10 V and a port output (PRT).

Pin Configuration

(top view)

Pin Definitions and Functions

Pin No.	Symbol	Function
1	$V \mathrm{do}$	Supply voltage
2	SCL	$\mathrm{I}^{2} \mathrm{C}$ bus clock
3	SDA	$\mathrm{I}^{2} \mathrm{C}$ bus data input and acknowledge output
4	AO	Address input
5	PRT	Port output
6	SA 1	Switch output (open drain output for 10 V)
7	SA 2	Switch output (open drain output for 10 V)
8	SA 3	Switch output (open drain output for 10 V)
9	AM/FM	Switch output (open drain output, 10 V) switching AM/ FM operation
10	FMI	FM input
11	GND2	Ground connection for AM and FM input amplifier
12	AMI	AM input
13	PDFMA	Analog output corresponding to the phase detector output, in test operation open drain output of FRN and FVN signal
14	PDFM	Phase detector output for AM or FM active or tristate depending on operating mode
15	PDAM	Phase detector output for AM or FM active or tristate depending on operating mode
16	PDAMA	Analog output corresponding to the phase detector output, in test operation open drain output of FRN and FVN signal
17	LD	Lock-detect output
18	OSCI	Connection for reference oscillator input and output
19	OSCQ	Connection for reference oscillator input and output
20	GND1	Ground

Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	
Supply voltage	V_{DD}	-0.3		6	V
Input voltage	V_{l}	-0.3		$V_{\mathrm{DD}}+0.3$	V
Power dissipation per output	P_{O}			10	mW
Total power dissipation	P_{tot}			300	mW
Storage temperature	$T_{\mathrm{s}: 9}$	-40		125	${ }^{\circ} \mathrm{C}$
Output voltage switch outputs	$V_{\text {OH }}$			10.5	V

Operating Range

Supply voltage	V_{DD}	4.5	5	5.5	V
Supply current	$\mathrm{IDD}_{\mathrm{DD}}$		6	10	mA
Ambient temperature	T_{A}	-25		85	${ }^{\circ} \mathrm{C}$
Output voltage switch outputs	V_{OH}			10	V

Test conditions for supply voltage

- V DO $=5.5 \mathrm{~V}$
- $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$ outputs not connected
- No test operation
- Max. permissible operating frequency on AM, FM, OSC $\operatorname{IN}=15 \mathrm{MHz}$
- $V_{\text {IFM, }}, V_{\text {IAM, }}, V_{\text {IOSCIN }}=100 \mathrm{mVrms}$
- Minimal divider ratios
- PLL in in-lock condition

Characteristics

$T_{\mathrm{A}}=25^{\circ} \mathrm{C}$; all voltages referenced to GND

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Input Signals SCL, SDA, AO

H-input voltage	V_{IH}	$0.7 \times V_{\mathrm{DO}}$		V_{DD}	V	
L-input voltage	V_{I}	0		1.5	V	
Input capacitance	C_{1}			10	pF	
Input current	I_{I}				10	$\mu \mathrm{~A}$

Input Signal OSC IN
Input frequency Input voltage Input capacitance input current

f	
V_{1}	100
C	
I	

15	MHz
	mVrms
10	pF
30	$\mu \mathrm{~A}$

$V_{\mathrm{DD}}=4.5 \mathrm{~V}$ (sine wave)
$\mu \mathrm{A} \quad V_{1}=V_{\text {od }}$

Input Signal AM

Input frequency	f	0.5		25	MHz Input voltage Input capacitance Input current	V_{1}

Input Signal FM

Characteristics (cont'd)
$T_{A}=25^{\circ} \mathrm{C}$; all voltages referenced to GND

| Parameter | Symbol | Limit Values | | | Unit | Test Condition |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | min. | typ. | max. | | |

Output signal PDFM (tristate output)

PD current value A	$I \mathrm{Q}$	340	± 570	800	$\mu \mathrm{~A}$	$V_{\mathrm{DJ}=5 \mathrm{~V}}$
PD current value B	$I \mathrm{O}$	85	± 145	205	$\mu \mathrm{~A}$	$T_{\mathrm{A}}=-25^{\circ} \mathrm{C} \ldots 60^{\circ} \mathrm{C}$
PD leakage current	10		± 50	500	$n \mathrm{~A}$	

Output Signal PDAM (tristate output)

PD current value A PD current value B
PD leakage current

10	70	± 115
$I 0$	15	± 30
$I 0$		± 50

160	μA
45	μA
500	$n A$

$V_{\mathrm{DD}}=5 \mathrm{~V}$
$T_{A}=-25^{\circ} \mathrm{C}, .60^{\circ} \mathrm{C}$
no load at the output

Output Signal PDAMA, PDFMA (analog output)

H-output current	$I Q H$		1	2.5	mA	$V_{\mathrm{PD}}=V_{D D}=5 \mathrm{~V}$ L -output current

Characteristics (cont'd)
$T_{\mathrm{A}}=25^{\circ} \mathrm{C}$; all voltages referenced to GND

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Output Signal LD (open drain output)

L-output signal	V at. towt		0.4	V ns	$\begin{aligned} & I \mathrm{oL}=3 \mathrm{~mA} \\ & V \mathrm{DD}=5 \mathrm{~V} \\ & C\llcorner=20 \mathrm{pF} \end{aligned}$
L-output pulse width	tow	30		ns	

Output Signal PRT

H-output voltage	$V_{\text {aH }}$	$V \mathrm{VD}-0.4$			V	I OH $=1 \mathrm{~mA}$
L-output voltage	V_{oL}			0.4	V	$I \mathrm{OL}=1 \mathrm{~mA}$
	V_{OL}			0.1	V	$I \sigma L=0.1 \mathrm{~mA}$

OutputSsignal SA 1, 2, 3 and FM (open drain switching outputs)

| L-output voltage | VaL

 $V Q L$ | | 0.4 | V | $I \mathrm{OL}=1 \mathrm{~mA}$
 $V \mathrm{DD}=5 \mathrm{~V}$
 $1 \mathrm{OL}=0.1 \mathrm{~mA}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Output Signal SDA

L-output voltage	V_{QL}			0.4	V	$I \alpha=3 \mathrm{~mA}$ $V_{\mathrm{DD}}=5 \mathrm{~V}$ $C \mathrm{~L}=400 \mathrm{pF}$

Test Circuit

Siemens Aktiengesellschaft

Application Circuit

Diagram

Status Programming Table

Status Bit

Bit		$\mathbf{0}$	$\mathbf{1}$
1	PRT	L	H
2	SA 1	L	H
3	SA 2	L	H
4	SA 3	L	H
5	PD analog/test	L (FM operation)	H (AM operation)*
6	PD polarity	neg.	test**
7	PD current	value B	pos.
8			value A (AM or FM operation)

"When the switch output FM is switched from " H " to "L" via bit 5 (FM), operation is switched from AM to FM
PDAM is in tristate and vice versa
**In test operation PDFMA and PDAMA outputs are switched as FVN and FRN outputs respectively

$\mathbf{I}^{2} \mathbf{C}$ Bus Transfer Protocol

Abstract

SDA SDA are compared with the value set on pin AO . If the values are identical, the respective chip is selected.

Programming Example

Transfer Protocol for $\mathbf{I}^{2} \mathrm{C}$ Bus

$\mathbf{I}^{2} \mathbf{C}$ Bus Timing, PRT, SA, AM/FM

Parameter	Symbol	Limit Values		Unit
		min.		max.

All values are referenced to specified input levels V_{IH} and V_{LL}.

Pulse Diagram

Phase Detector/Lock Detector

