Features

- Cell Band CDMA and GPS Operation
- Low Current Consumption
- Excellent Noise and IP3 Performance
- Adjustable Third Order Intercept on LNA Stage
- Flexible IF Frequency Range from 80 MHz to 230 MHz
- Excellent Cross Modulation Performance

Applications

- Cell and GPS-mode/Cell and GPS-band CDMA IS-95/98 Based Mobile Phones with GPS Support
- Other Familiar Applications

Benefits

- High Linearity Eliminates Potential Call Drop Issues Associated with Gain Switching
- Most Compact Integrated Receiver for Cell Band CDMA and A-GPS Applications
- IM98 IMD Requirements Met With two Gain States Simplifying Calibration Procedure
- Best In Class A-GPS Cascade Gain for Maximum Takeover
- TX LO Buffer Included
- Very Small 24-pin 4 mm x 4 mm Package
- Few External Components
- Fully ESD Protected

Electrostatic sensitive device. Observe precautions for handling.

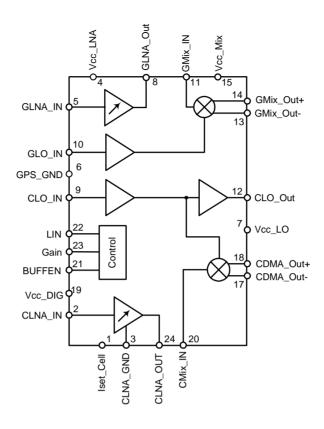
Description

The T0354 is a CDMA front-end receiver RFIC designed for cell-band, cell and GPSmode operation. The device supports CDMA operation in the cellular band and A-GPS operation. The IF range is from 80 MHz to 230 MHz with external tuning. The cell-band low noise amplifier has an adjustable third order intercept (IP3) to minimize inter-modulation and cross-modulation effects. The mixers are designed for differential IF outputs (single-ended or differential IF outputs for GPS mode), and they feature excellent linearity and low noise figure.

The T0354 device is available in a 4 mm x 4 mm MLF package with 24 pins. This front-end receiver is capable of meeting all electrical requirements in accordance with the TIA/EIA 98-C wireless communication standard.

2.8 V Dual-band/ Dual-mode RF Receiver for Cell CDMA/GPS

T0354


Preliminary (Summary)

Rev. 4580AS-CDMA-11/02

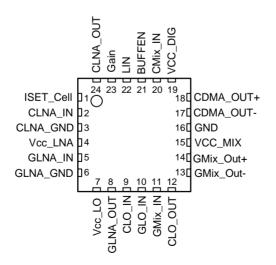


Figure 1. Block Diagram

Pin Configuration

Figure 2. Pinning HP-VFQFP-N24

T0354

Pin Description

Pin	Symbol	Function
1	lset_Cell	Bias resistor for cell LNA. For typical bias use a 390 Ω resistor to ground which sets the bias current for HGHL mode.
2	CLNA_IN	Cell band LNA input. Requires a blocking capacitor and an LC (shunt C/series L) matching network for optimum gain, intercept and noise performance.
3	CLNA_GND	Cell band LNA emitter ground. The LNA emitter ground should be connected immediately to the ground plane to reduce stray inductance and capacitance that may affect performance.
4	Vcc_LNA	Power supply pin for GPS and Cell LNAs. Bypass with a capacitor as close to the pin as possible.
5	GLNA_IN	GPS LNA input. Requires a DC blocking capacitor and an L-C shunt (shunt C/series L) matching network for optimum gain, intercept and noise performance.
6	GLNA_GND	Cell band LNA emitter ground. The LNA emitter ground should be connected immediately to the ground plane to reduce stray inductance and capacitance that may affect performance.
7	Vcc_LO_TX	Supply voltage for LO buffers.
8	GLNA_OUT	GPS LNA output.
9	CLO_IN	Cell band LO input.
10	GLO_IN	GPS LO input.
11	GMix_IN	GPS mixer input.
12	CLO_OUT	Cell band LO buffer output. Internally matched to 100 Ω . Does not require a blocking capacitor.
13	GMix_OUT-	Negative GPS IF output.
14	GMix_OUT+	Positive GPS IF output.
15	Vcc_Mix	Supply voltage for all mixers.
16	GND	Device ground.
17	CDMA_OUT-	Negative CDMA output.
18	CDMA_OUT+	Positive CDMA output.
19	Vcc_DIG	Supply voltage for logic control circuits.
20	CMix_IN	Cell band mixer RF input.
21	BUFFEN	LO output buffer enable. Set BUFFEN pin HIGH to power up the LO buffer output corresponding to the selected band.
22	LIN	Logic input for high or low linearity. Logic HIGH selects high linearity.
23	Gain	Logic input for activating Cell LNA; Logic LOW selects low gain.
24	CLNA_OUT	Cell band LNA output. Requires a pull-up inductor to Vcc and a series blocking capacitor, which can be used as part of the output matching network.
25	Paddle	Device ground and heat sink, requires good thermal path; RF reference plane.

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Supply voltages, no RF applied	V _{CC}	-0.5 to +4.0	V
Logic control voltages	V _{CTRL}	-0.5 to V _{CC} +0.5	V
Supply current	I _{CC}	50.0	mA
RF and LO input signals	C _{LO;} CLNA_IN; GLNA_IN;	5.0	dBm
I _{SET_CELL}	LNA IP3 adjustment	1	mA
Operating case temperature	T _c	-40 to +100	°C
Storage temperature	T _{STG}	-55 to +150	°C

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient	R _{thJA}	TBD	K/W

DC Supply Characteristics

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions (no RF applied): V_{CC} = +2.75 V, T_{amb} = 25°C.

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
	All Modes								
	Supply voltage		4, 7, 15, 19	V _{cc}	2.7	2.8	3.3	V	
	Control voltage high		21, 22, 23	V _{CTRL}	1.7			V	
	Control voltage low		21, 22, 23	V _{CTRL}			0.5	V	
	LO Rx buffer supply current		9, 10	I _{CCMIX}		8.0		mA	
	LO Tx buffer current	BUFFEN = High	12	I _{CCMIX}		5.0		mA	
	Logic-high current		21, 22, 23	I _{CTRL}			100	μA	
	Logic-low current		21, 22, 23	I _{CTRL}	-5.0			μA	
	Power down supply current	Gain, LIN = LOW	4, 7, 15, 19	I _{CC}			10	μA	

*) Type means: A =100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

AC Electrical Characteristics

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions: $V_{CC} = +2.75$ V, $T_{amb} = 25$ °C, all RF inputs and outputs with a return loss of 10 dB minimum.

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
	General Performance								
	Operating frequency	Cellular band	2	f _{CELL}	869	881.5	894	MHz	
	range	A-GPS band	5	f _{GPS}		1575.42		MHz	
		Cellular band:	9	f _{LOCELL}	784		809	MHz	
	LO frequency range	IF = 85 MHz	9	f _{LOCELL}	954		979	MHz	
		GPS band: IF = 85 MHz	10	f _{LOGPS}		1490.04		MHz	
			10	f _{LOGPS}		1660.80		MHz	
	IF frequency range	Cell and GPS band	13, 14, 17, 18	f _{IF}	80	85	230	MHz	
	LO Input power level	Cell and GPS band	13, 14, 17, 18	P _{LO}	-10	-5	0	dBm	
	LO Tx buffer output power level	Cellular band; not matched at dedicated frequency	12	P _{LOOUT}	-8	-5.5		dBm	

*) Type means: A =100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Cascade RF Electrical Characteristics (Cellular Band)

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions: $V_{CC} = +2.75$ V, $T_{amb} = 25^{\circ}$ C, RF = 881.5 MHz; LO = 966.5 MHz; IF = 85 MHz; LO input = -5.0 dBm; RF input = -35 dBm (high gain mode).

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
	Combined LNA and	Mixer Performance, CDN	IA Modula	ation				-	
	High-Gain High-Line	High-Gain High-Linearity Mode (HGHL)							
	Gain			G		28.5		dB	
	Noise figure	Gain = High;		NF		2.0		dB	
	Input IP3	LIN = High		IP3		-8.0		dBm	
	Supply current			I _{CC}		26		mA	
	High-Gain Low-Linearity Mode (HGLL. Paging mode)								
	Gain			G		28		dB	
	Noise figure	Gain = High;		NF		2.1		dB	
	Input IP3	LIN = Low		IP3		-10.0		dBm	
	Supply current			I _{CC}		19		mA	
	Low-Gain Mode (LG	i)							
	Gain			G		12		dB	
	Noise figure	Gain = Low;		NF		11		dB	
	Input IP3	LIN = High		IP3		9.0		dBm	
	Supply current			I _{CC}		23		mA	

*) Type means: A =100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Cascade RF Electrical Characteristics (GPS Band)

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions: $V_{CC} = +2.75 \text{ V}$, $T_{amb} = 25^{\circ}\text{C}$, RF = 1575.42 MHz; LO = 1490.04 MHz; IF = 85.38 MHz; LO input = -5.0 dBm; RF input = -45 dBm.

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
	Combined LNA and Mix	Combined LNA and Mixer Performance							
	A-GPS LNA Performance								
	Gain			G		33		dB	
	Noise figure	Gain = Low; LIN = Low; BUFFEN-GPS = High		NF		1.8		dB	
	Input IP3			IIP3		-16		dBm	
	Supply current			lcc		17.5		mA	

*) Type means: A =100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Typical Electrical Characteristics LNA and Mixer Separately (Cellular Band)

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions: $V_{CC} = +2.75$ V, $T_{amb} = 25$ °C, RF = 881.5 MHz; LO = 966.5 MHz; IF = 85 MHz; LO input = -5.0 dBm; RF input = -35 dBm (high gain mode).

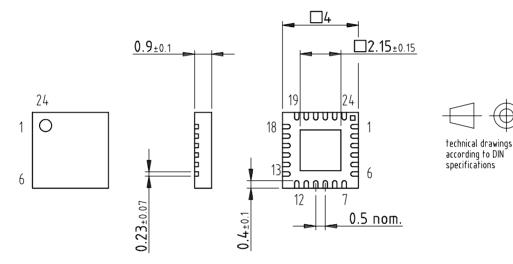
No.	Parameters	Test Conditions	Gain (dB)	NF (dB)	IIP3 (dBm)	Type*		
	Cell Band, High-Gain Hi	gh-Linearity Mode (HGF	IL); CDMA Modulation	n				
	Cell LNA	Gain = High; LIN = High	16	1.5	10			
	Cell mixer		14.5	6.5	7			
	Cell Band, High-Gain Low-Linearity Mode (HGLL); CDMA Modulation							
	Cell LNA	Gain = High;	15.5	1.6	3.7			
	Cell mixer	LIN = Low	14	6.0	4.0			
	Cell Band, Low-Gain Mode (LG); CDMA Modulation							
	Cell LNA	Gain = Low; LIN = High	-1	4.0	20			

*) Type means: A =100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Typical Electrical Characteristics LNA and Mixer Separately (GPS Band)

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions: $V_{CC} = +2.75 \text{ V}$, $T_{amb} = 25^{\circ}\text{C}$, RF = 1575.42 MHz; LO = 1490.04 MHz; IF = 85.38 MHz; LO input = -5.0 dBm; RF input = -35 dBm; RF input = -35 dBm (high gain mode).

No.	Parameters	Test Conditions	Gain (dB)	NF (dB)	llP3 (dBm)	Type*
	A-GPS Mode					
	GPS LNA	Gain = Low; LIN = Low; BUFFEN- GPS = High	18	1.5	-2.0	
	GPS mixer		16	5.5	-0.5	


*) Type means: A =100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Ordering Information

Extended Type Number	Package	Remarks
T0352	HP-VFQFP-N24	$4 \text{ mm} \times 4 \text{ mm}$

Package Information

Package: HP-VFQFP-N24 (acc. JEDEC OUTLINE No. MO-220) Dimensions in mm

Drawing-No.: 6.543-5086.01-4 Issue: 1; 26.02.02

Note: 1. GND Solder Mask Opening Is not Centered on the Package.

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail literature@atmel.com

Web Site http://www.atmel.com

© Atmel Corporation 2002.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Atmel[®] is the registered trademark of Atmel.

Other terms and product names may be the trademarks of others.

