Features

- Current-controlled Output Current Source with 5 Input Channels
- 2 Selectable Outputs for Grounded Laser Diodes
- Output Current per Channel up to 200 mA
- Total Output Current up to 250 mA
- Rise Time 1.0 ns / Fall Time 1.1 ns
- On-chip RF Oscillator
- Control of 2 Different Frequencies and Swings by Use of 4 External Resistors
- Oscillator Frequency Range from 200 MHz to 600 MHz
- Oscillator Swing to 100 mA
- Single 5-V Power Supply
- Common Enable/Disable Input
- TTL/CMOS Control Signals
- Small SSO24 Package and HP-VFQFP-N28 Package

Applications

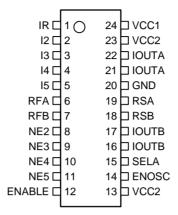
- Combo Drives (DVD + CD-RW)
- DVD-RAM with CD-RW Capability
- . DVD-RW with CD-RW Capability

Description

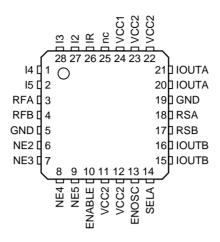
The T0800 is a laser diode driver for the operation of two different, grounded laser diodes for DVD-RAM (650 nm) and CD-RW (780 nm). It includes five channels for five different optical power levels which are controlled by a separate IC. The read channel generates a continuous output level. The channels 2 to 5 are provided as write channels with very fast switching speeds. When a 'low' signal is applied to the NE pins, write current pulses are enabled. All channels are summed together and switched to one of the two outputs IOUTA or IOUTB by the select input SELA. Each channel can contribute up to 200 mA to the total output current of up to 250 mA. A total gain of 100 is provided between each reference current input and the selected output. Although the reference inputs are current inputs, voltage control is possible by using external resistors. An on-chip RF oscillator reduces laser mode hopping noise during read mode. Frequency and swing can be set independently for the two selectable outputs with two pairs of resistors. Oscillation is enabled by a 'high' signal at the ENOSC pin. Complete output current and oscillator switch-off is achieved by a 'low' signal at the ENABLE input.

5-Channel Laser Driver with RF Oscillator and 2 Outputs

T0800


Preliminary

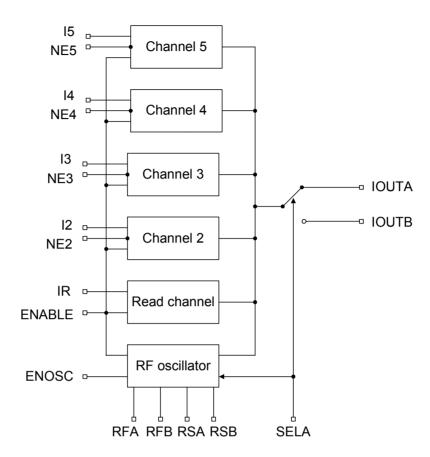
Pin Configuration


Figure 1. Pinning SSO24

Pin Description: SSO24

Pin	Symbol	Туре	Function			
1	IR	Analog	Input current, bias voltage approximately GND			
2	12	Analog	nput current, bias voltage approximately GND			
3	13	Analog	nput current, bias voltage approximately GND			
4	14	Analog	nput current, bias voltage approximately GND			
5	15	Analog	Input current, bias voltage approximately GND			
6	RFA	Analog	External resistor to GND sets frequency of oscillator A			
7	RFB	Analog	External resistor to GND sets frequency of oscillator B			
8	NE2	Digital	Digital control of channel 2 (low active)			
9	NE3	Digital	Digital control of channel 3 (low active)			
10	NE4	Digital	Digital control of channel 4 (low active)			
11	NE5	Digital	Digital control of channel 5 (low active)			
12	ENABLE	Digital	Enables output current (high active)			
13	VCC2	Supply	+5 V power supply for IOUT			
14	ENOSC	Digital	Enables RF oscillator (high active)			
15	SELA	Digital	High: selects IOUTA, RFA, RSA			
			Low: selects IOUTB, RFB, RSB			
16/17	IOUTB	Analog	Output current source B for laser diode			
18	RSB	Analog	External resistor to GND sets swing of oscillator B			
19	RSA	Analog	External resistor to GND sets swing of oscillator A			
20	GND	Supply	Ground			
21/22	IOUTA	Analog	Output current source A for laser diode			
23	VCC2	Supply	+5 V power supply for IOUT			
24	VCC1	Supply	+5 V power supply for circuit			

Figure 2. Pinning HP-VFQFP-N28


Pin Description: HP-VFQFP-N28

Pin	Symbol	Type	Function			
1	14	Analog	Input current, bias voltage approximately GND			
2	15	Analog	Input current, bias voltage approximately GND			
3	RFA	Analog	External resistor to GND sets frequency of oscillator A			
4	RFB	Analog	External resistor to GND sets frequency of oscillator B			
5	GND	Supply	Ground			
6	NE2	Digital	Digital control of channel 2 (low active)			
7	NE3	Digital	Digital control of channel 3 (low active)			
8	NE4	Digital	Digital control of channel 4 (low active)			
9	NE5	Digital	Digital control of channel 5 (low active)			
10	ENABLE	Digital	Enables output current (high active)			
11, 12	VCC2	Supply	+5 V power supply IOUT			
13	ENOSC	Digital	Enables RF oscillator (high active)			
14	SELA	Digital	High: selects IOUTA, RFA, RSA			
14	SLLA	Digital	Low: selects IOUTB, RFB, RSB			
15	IOUTB	Analog	Output current source B for laser diode			
16	IOUTB	Analog	Output current source B for laser diode			
17	RSB	Analog	External resistor to GND sets swing of oscillator B			
18	RSA	Analog	External resistor to GND sets swing of oscillator A			
19	GND	Supply	Ground			
20	IOUTA	Analog	Output current source A for laser diode			
21	IOUTA	Analog	Output current source A for laser diode			
22, 23	VCC2	Supply	+5 V power supply IOUT			
24	VCC1	Supply	+5 V power supply circuit			
25	nc	_	Not connected			
26	IR	Analog	Input current, bias voltage approximately GND			
27	12	Analog	Input current, bias voltage approximately GND			
28	13	Analog	Input current, bias voltage approximately GND			
Paddle	-	_	Should be conneced with ground			

Figure 3. Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply voltage	V _{cc}	-0.5 to +6.0	V
Input voltage at IR, I2, I3, I4, I5	V _{IN1}	-0.5 to + 0.5	V
Input voltage at NE2, NE3, NE4, NE5, ENOSC	V _{IN2}	-0.5 to V _{CC} + 0.5	V
Output voltage	V _{OUT}	-0.5 to V _{CC} -1	V
Power dissipation	P _{tot}	0.7 ⁽¹⁾ to 1 ⁽²⁾	W
Junction temperature	T _J	150	°C
Storage temperature range	T _{stg}	-65 to +125	°C

Notes: 1. $R_{thJA} \le 115 \text{ K/W}, T_{amb} = 70^{\circ}\text{C}$ 2. $R_{thJA} \le 115 \text{ K/W}, T_{amb} = 25^{\circ}\text{C}$

Thermal Resistance

Parameter	Symbol	Value ⁽¹⁾	Unit
Junction ambient	R_{thJA}	115 (SSO24) 35 (HP-VFQFP-N28)	K/W K/W

Note: 1. Measured with multi-layer test board (JEDEC standard JESD51-7)

Recommended Operating Conditions

Parameter	Symbol	Value	Unit
Supply voltage range	V _{cc}	4.5 to 5.5	V
Input current	I _{IR} , I _{I2} , I _{I3} , I _{I4} , I _{I5}	< 2.5	mA
External resistor to GND to set oscillator frequency	RFA, RFB	> 3	kΩ
External resistor to GND to set oscillator swing	RSA, RSB	> 100	Ω
Operating temperature range	T _{amb}	0 to +70	°C

Electrical Characteristics

 $V_{CC} = 5 \text{ V}, T_{amb} = 25 ^{\circ}\text{C}, \text{ ENABLE} = \text{High}, \text{ NE2} = \text{NE3} = \text{NE4} = \text{NE5} = \text{High}, \text{ ENOSC} = \text{Low}, \text{ unless otherwise specified}$

No.	Parameters	Test Conditions	Pin ⁽¹⁾	Symbol	Min.	Тур.	Max.	Unit	Type*
1	Power Supply		II.				II.	<u>l</u>	
1.1	Supply current, power down	ENABLE = Low, NE2 = NE3 = NE4 = NE5 = Low	11,12, 22, 23, 24	ICC _{PD2}		0.5		mA	А
1.2	Supply current, read mode, oscillator disabled	$I_{IR} = I_{I2} = I_{I3} = I_{I4} = I_{I5} = 500 \mu A$	11,12, 22, 23, 24	ICC _{R1}		115		mA	А
1.3	Supply current, read mode, oscillator enabled, output A selected	$I_{IR} = I_{I2} = I_{I3} = I_{I4} = I_{I5} = 500 \mu\text{A},$ ENOSC = High, RS = 560 Ω , RF = 7.5 k Ω , SELA = High	11,12, 22, 23, 24	ICC _{R2}		120		mA	А
1.4	Supply current, write mode	$I_{IR} = I_{I2} = I_{I3} = I_{I4} = I_{I5} = 500 \mu A,$ NE2 = NE3 = NE4 = NE5 = Low	11,12, 22, 23, 24	ICC _W		320		mA	A
1.5	Supply current, input off	$I_{IR} = I_{I2} = I_{I3} = I_{I4} = I_{I5} = 0 \mu A$	11,12, 22, 23, 24	ICC _{off}		18		mA	А
2	Digital Inputs		•						
2.1	NE2/NE3/NE4/NE5 low voltage		6, 7, 8, 9	VNE _{LO}			1.1	V	А
2.2	NE2/NE3/NE4/NE5 high voltage		6, 7, 8, 9	VNE _{HI}	2.0			V	А
2.3	SELA low voltage		14	VSELA _{LO}			0.5	V	Α
2.4	SELA high voltage		14	VSELA _{HI}	2.0			V	Α
2.5	ENABLE low voltage		10	VEN _{LO}			0.5	V	Α
2.6	ENABLE high voltage		10	VEN _{HI}	2.0			V	Α
2.7	ENOSC low voltage		13	VEO _{LO}			0.5	V	Α
2.8	ENOSC high voltage		13	VEO _{HI}	2.0			V	Α
3	Currents at Digital Inp	outs	1					11	•
3.1	NE2/NE3/NE4/NE5 low current	NE = 0 V	6, 7, 8, 9	INE _{LO}	-300			μA	А
3.2	NE2/NE3/NE4/NE5 high current	NE = 5 V	6, 7, 8, 9	INE _{HI}			800	μΑ	А
3.3	SELA low current	SELA = 0 V	14	ISELA _{LO}	-45			μΑ	Α
3.4	SELA high current	SELA = 5 V	14	ISELA _{HI}			150	μΑ	Α
3.5	ENABLE low current	ENABLE = 0 V	10	IEN _{LO}	-150			μA	Α
3.6	ENABLE high current	ENABLE = 5 V	10	IEN _{HI}			100	μΑ	Α
3.7	ENOSC low current	ENOSC = 0 V	13	IEO _{LO}	-100			μΑ	Α
3.8	ENOSC high current	ENOSC = 5 V	13	IEO _{HI}			800	μA	Α

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter Note:

1. Related to HP-VFQFP-N28 Package

Electrical Characteristics: Laser Amplifier

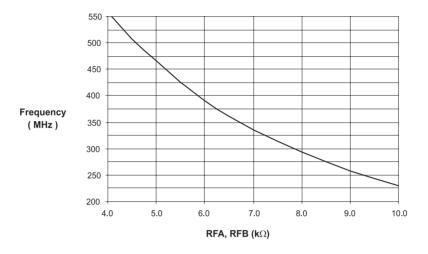
 V_{CC} = 5 V, T_{amb} = 25°C, ENABLE = High, unless otherwise specified

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
4	Outputs IOUTA and IOUTB								
4.1	Best fit current gain	Any channel (1)	15, 16, 20, 21	GAIN	90	100	130	mA/mA	А
4.2	Best fit current offset	Any channel (1)	15, 16, 20, 21	IOS	-8		+4	mA	А
4.3	Output current linearity	Any channel (1)	15, 16, 20, 21	ILIN	-3		+3	%	А
4.5	Output current per channel	Output is sourcing	15, 16, 20, 21	I _{OUTR}	200			mA	А
4.6	Total output current		15, 16, 20, 21	I _{OUT}	250			mA	А
4.7	I _{IN} input impedance	R _{IN} is to GND	1, 2, 26, 27, 28	R _{IN}	170	220	270	Ω	А
4.8	NE threshold	Temperature stabilized	6, 7, 8, 9	VTH		1.68		V	С
4.9	Output off current 1	ENABLE = Low	15, 16, 20, 21	IOFF ₁			1	mA	А
4.10	Output off current 2	NE2 = NE3 = NE4 = NE5 = High	15, 16, 20, 21	IOFF ₂			1	mA	А
4.11	Output off current 3	NE2 = NE3 = NE4 = NE5 = Low, $I_{IR} = I_{I2} = I_{I3} = I_{I4} = I_{I5} = 0$ µA	15, 16, 20, 21	IOFF ₃			5	mA	А
4.12	I _{OUT} supply sensitivity, read mode	$I_{OUT} = 40 \text{ mA},$ $V_{CC} = 5 \text{ V} \pm 10\%,$ read-only	15, 16, 20, 21	VSE _R	-5		1	%V	А
4.13	I _{OUT} supply sensitivity, write mode	I_{OUT} = 80 mA, 40 mA read + 40 mA write, V_{CC} = 5 V ±10%	15, 16, 20, 21	VSE _W	-6		0	%V	А
4.14	I _{OUT} current output noise	I _{OUT} = 40 mA, ENOSC = Low	15, 16, 20, 21	INO _O		3		nA/ rt-Hz	С
4.15	I _{OUT} temperature sensitivity, read mode	I _{OUT} = 40 mA, read only	15, 16, 20, 21	TSE _R		-100		ppm/°C	С
4.16	I _{OUT} temperature sensitivity, write mode	I _{OUT} = 80 mA, 40 mA read + 40 mA write	15, 16, 20, 21	TSE _W		-300		ppm/°C	С

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Note: 1. Linearity of the amplifier is calculated using a best fit method at three operating points of I_{OUT} at 20 mA, 40 mA, and 60 mA, $I_{OUT} = (I_{IN} \times GAIN) + I_{OS}$

Electrical Characteristics


 V_{CC} = 5 V, I_{OUT} = 40 mA DC with 40-mA pulse, T_{amb} = 25°C, unless otherwise specified

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
5	Outputs IOUTA and	I IOUTB, AC Performance				и.	l.	W.	J.
5.1	Write rise time	I _{OUT} = 40 mA (read) +40 mA (10%-90%) (1)	15,16, 20, 21	t _{RISE}		1.0	3.0	ns	С
5.2	Write fall time	I _{OUT} = 40 mA (read) +40 mA (10%-90%) ⁽¹⁾	15,16, 20, 21	t _{FALL}		1.1	3.0	ns	С
5.3	Output current overshoot	I _{OUT} = 40 mA (read) + 40 mA ⁽¹⁾	15,16, 20, 21	os		5		%	С
5.4	I _{OUT} ON prop delay	NE 50% High-Low to I _{OUT} at 50% of final value	15,16, 20, 21	t _{ON}		2.0		ns	С
5.5	I _{OFF} OFF prop delay	NE 50% Low-High to I _{OUT} at 50% of final value	15,16, 20, 21	t _{OFF}		2.0		ns	С
5.6	Disable time	ENABLE 50% High-Low to I _{OUT} at 50% of final value	15,16, 20, 21	t _{DIS}		20		ns	С
5.7	Enable time	ENABLE 50% Low-High to I _{OUT} at 50% of final value	15,16, 20, 21	t _{EN}		20		ns	С
5.8	Disable time oscillator	ENOSC 50% Low-High to I _{OUT} at 50% of final value	15,16, 20, 21	T _{DISO}		4		ns	С
5.9	Enable time oscillator	ENOSC 50% High-Low to I _{OUT} at 50% of final value	15, 16, 20, 21	T _{ENO}		2		ns	С
5.10	SELA delay	SELA Low-High 50% to I _{OUT} at 50% of final value	15,16, 20, 21	T _{SAH}		TBD		ns	С
5.11	SELA delay	SELA High-Low 50% to I _{OUT} at 50% of final value	15,16, 20, 21	T _{SAL}		TBD		ns	С
5.12	Amplifier bandwidth	I _{OUT} = 50 mA, all channels, -3 dB value	15,16, 20, 21	BW_LCA		20		MHz	С
6	Oscillator								
6.1	Oscillator frequency	RF = 4.7 kΩ	15,16, 20, 21	F _{osc}	380	470	560	MHz	А
6.2	Oscillator temperature coefficient	RF = 4.7 kΩ	15, 16, 20, 21	TC _{OSC}		-150		ppm/°C	С
6.3	Disable time oscillator	ENOSC 50% High-Low to I _{OUT} , at 10%/90% of final value	15,16, 20, 21	T _{DISO}		4		ns	С
6.4	Enable time oscillator	ENOSC 50% Low-High to I _{OUT} , at 10%/90% of final value	15,16, 20, 21	T _{ENO}		2		ns	С

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Application Information Oscillator

Figure 4. Frequency vs. Resistor RFA and RFB (RS = 525Ω)

Figure 5. Swing vs. Resistor RSA and RSB (RF = $7.82 \text{ k}\Omega$)

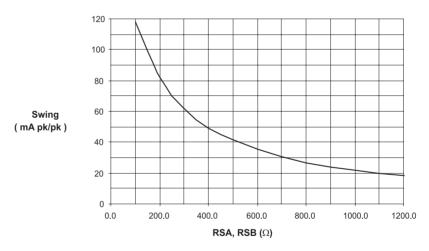


Figure 6. Frequency Dependency of Swing

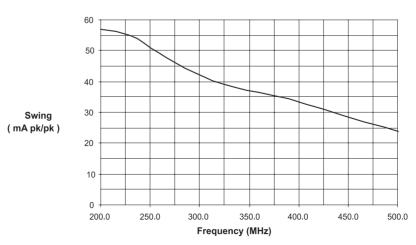


Figure 7. Transfer Characteristic of all Channels (gain = 111)

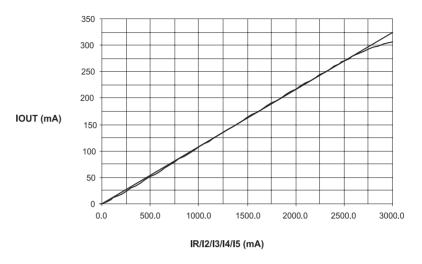


Figure 8. Output Characteristic (Voltage Compliance) R(IOUT) = 5.8 Ω

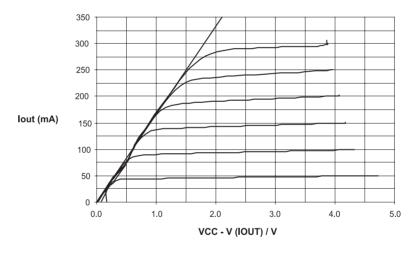
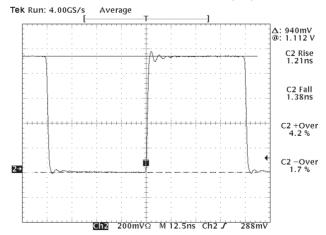



Figure 9. Output Pulse, Read: 50 mA, Write: 250 mA pk-pk

11

Figure 10. Timing Diagram of IOUT

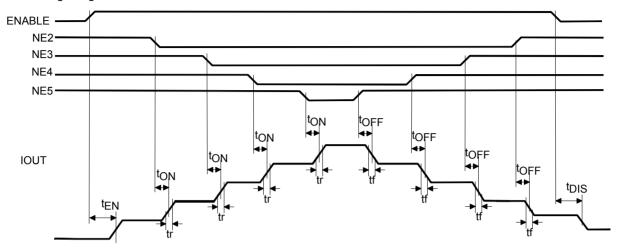
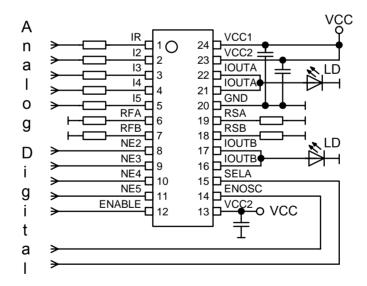
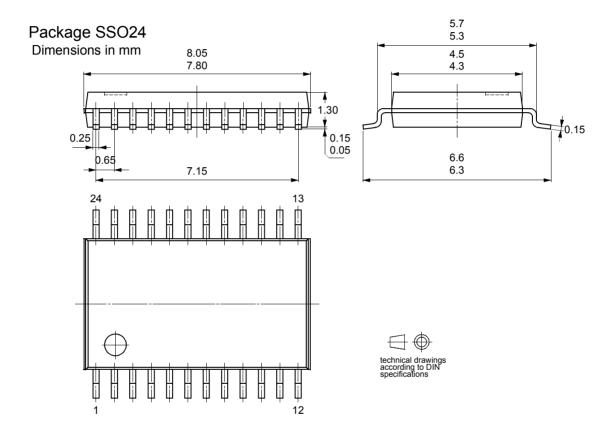
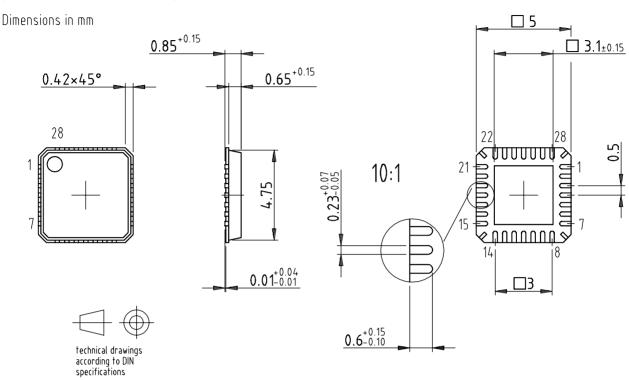



Figure 11. Application Circuit



Ordering Information


Extended Type Number	Package	Remarks
T0800-TNQ	SSO24	Taped and reeled
T0800-PJQ	HP-VFQFP-N28	Taped and reeled

Package Information

Package: HP-VFQFP-N28 Exposed pad Var. A

(acc. JEDEC OUTLINE No. MO-220)

Drawing-No.: 6.543-5081.01-4

Issue: 2; 08.04.02

Subcontractor: Amkor

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail literature@atmel.com


Web Site http://www.atmel.com

© Atmel Corporation 2002.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Atmel® is the registered trademark of Atmel.

Other terms and product names may be the trademarks of others.

