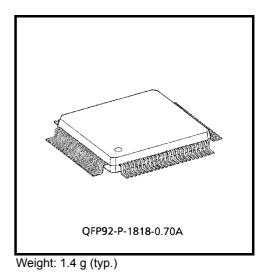
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

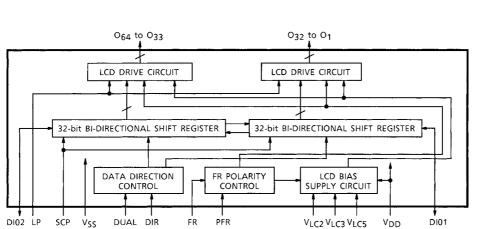
T6A41

COLUMN DRIVER LSI FOR A DOT MATRIX LCD

The T6A41 is a column driver with 64-output channels for a dot matrix LCD. The T6A41 realizes low power LCD systems using the CMOS Si-Gate process. The T6A41 has two bi-directional data Input / Output pins and three types of data flow (pin program): (1) $O_1 \rightarrow O_{64}$, (2) $O_{64} \rightarrow O_1$, (3) $O_1 \rightarrow O_{32}$, $O_{64} \rightarrow O_{33}$.

Features


•

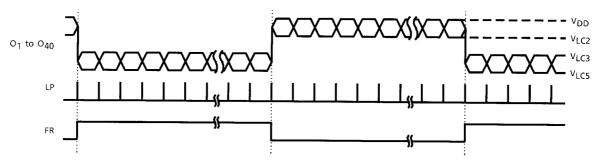

- 64–output column driver
 - Three types of data flow:

(1) $O_1 \rightarrow O_{64}$ (2) $O_{64} \rightarrow O_1$ (3) $O_1 \rightarrow O_{32}, O_{64} \rightarrow O_{33}$

- High speed operation
- Low power consumption
- Power supply: $5 V \pm 10\%$
- 92-pin plastic flat package

Block Diagram

TOSHIBA


		043	042	041	0_{40}	039	038	037	0 ₃₆	0 ₃₅	034	033	VDD	0 ₃₂	0 ₃₁	030	029	028	027	026	025	024	023	022		
		69	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47		
044	70												1												46	021
045	71												Ì												45	020
0 ₄₆	72												į												44	019
047	73																								43	0 ₁₈
048	74					Т	6 A	4	1				-												42	017
049	75					(T	OP \	VIEW	')				i												41	0 ₁₆
0 ₅₀	76												ļ												40	0 ₁₅
051	77												į												39	014
052	78												ļ												38	0 ₁₃
053	79												;												37	0 ₁₂
054	80												į												36	011
V _{DD}	81			•				· - · -	· - · ·		- • -		•	•••••			· - · -	· - · -	••••••	- · - ·		· ••• · •••	·· · -	-	35	V _{DD}
055	82												į												34	0 ₁₀
0 ₅₆	83												ł												33	09
0 ₅₇	84												ł												32	08
0 ₅₈	85												i												31	07
059	86												į												30	06
0 ₆₀	87												ł												29	05
0 ₆₁	88												-												28	04
0 ₆₂	89			1	PIN	IND	EX						-												27	03
0 ₆₃	91		+	/									i												26	02
064	91		Φ)—									i												25	01
NC	92	ĺ											I												24	NC
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	ノ	
		UN	N	D102	SCP	Я	LP	NC	PFR	VSS	DUAL	DIR	^{VDD}	VLC2	VLC3	VLC5	D101	Ŋ	NC	UZ Z	S	NC	NC	Ŋ		

<u>TOSHIBA</u>

Pin Functions

Pin Name	1/0	Functions											
O ₁ to O ₆₄	Output	LCD drive signal output											
DIO1, DIO2	I / O	i-directional data input and output											
SCP	Input	(Shift Clock Pulse) Shift clock pulse input											
FR	Input	(Frame) Frame signal input											
LP	Input	(Latch Pulse) Latch pulse signal inpu	(Latch Pulse) Latch pulse signal input										
			DUAL	DIR	DI01	DI021	Data Direction						
		(Dual Mode) Selects dual mode or single mode data flow.	L	L	OUT	IN	$064 \rightarrow 01$		V_{DD} to V_{SS}				
DUAL	Input		L	Н	IN	OUT	O1 → O64						
			Н	L	—	—	Do not use						
			н	Н	IN	IN	$\begin{array}{c} 01 \rightarrow 032, \\ 064 \rightarrow 033 \end{array}$						
DIR	Input	(Direction) Selects input data flow direction.											
PFR	Input	(Polarity of Flame) Usually connected to V	/ss										
V _{LC2}	_	Power supply for LCD dri	Power supply for LCD drive										
V _{LC3}	—	Power supply for LCD drive											
V _{LC5}	_	Power supply for LCD dri	ive						_				
V _{DD}	_	Power supply (5 V)											
V _{SS}	_	Power supply (0 V)											

Timing Diagram

Absolute Maximum Ratings (Ta = 25°C)

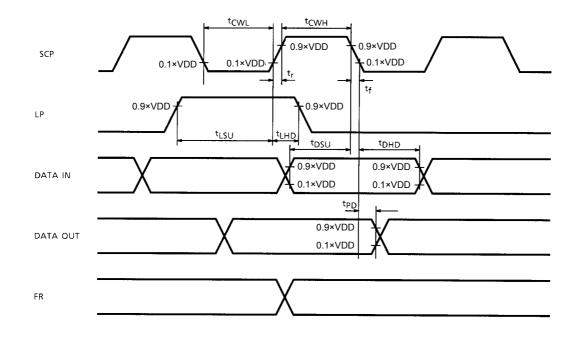
Item	Symbol	Rating	Unit
Supply Voltage (1)	V _{DD} (Note 1)	-0.3 to 7.0	V
Supply Voltage (2)	V _{LC2} , V _{LC3} , V _{LC5} (Note1, 2)	-0.3 to 7.0	V
Input Voltage	V _{IN} (Note 1)	-0.3 to V _{DD} + 0.3	V
Operating Temperature	T _{opr}	-20 to 75	°C
Storage Temperature	T _{stg}	−55 to 125	°C

Note 1: Referenced to $V_{SS} = 0 V$

Note 2: Ensure that the following condition is always maintained.

 $V_{DD} \ge V_{LC2} \ge V_{LC3} \ge V_{LC5}$

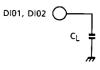
Electrical Characteristics DC Characteristics Test Conditions (Unle


$\left(\begin{matrix} \text{Unless Otherwise Noted, } V_{\text{SS}} = 0 \text{ V}, \text{ } V_{\text{DD}} = 5.0 \text{ V} \pm 10\%, \\ V_{\text{LC5}} = 0 \text{ V}, \text{ } \text{Ta} = -20 \text{ to } 75^{\circ}\text{C} \end{matrix}\right)$

Item		Symbol	Test Circuit	Test Co	nditions	Min	Тур.	Max	Unit	Pin Name
Operating Volt	age (1)	V _{DD}	—	—		4.5	5.0	5.5	V	V _{DD}
Operating Volt	age (2)	V _{LC5}	_	_		0		V _{DD} -3.0	V	V _{LC5}
Input Voltage	H Level	V _{IH}	_	_	_	V _{DD} -1.0	_	V _{DD}	V	(*)
input voltage	L Level	VIL	_	_	_	0	_	1.0	V	(*)
Output	H Level	V _{OH}	_	I _{OH} = −0.4 mA	V _{DD} -0.4		V _{DD}	V	DIO1, DIO2	
Voltage	L Level	V _{OL}	_	I _{Oh} = 0.4 mA	0	_	0.4	V	DIO1, DIO2	
Output Resista	ince	R _{COL}	_	l _d = ±50 μA		_	-	30	kΩ	O ₁ to O ₆₄
Operating Frequency		f _{scp}	_	T _a = −20 to 75°C		_	-	400	kHz	SCP
Current Consumption				V _{DD} = 5.0 V V _{LC2} = 3.0 V V _{LC3} = 2.0 V V _{LC5} = 0.0 V	Binary Data Input	_	_	1.0	mA	Vaa
		ISS - IFR = 3 ISS -	f _{FR} = 39 Hz f _{SCP} = 250 kHz O ₁ to O ₈₀ : No Load	Input Data : LOW Constant	_	_	0.4	mA	V _{SS}	

*: DIO1, DIO2, SCP, FR, LP, PFR, DUAL, DIR

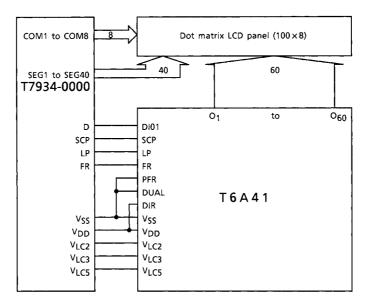
<u>TOSHIBA</u>


AC Characteristics

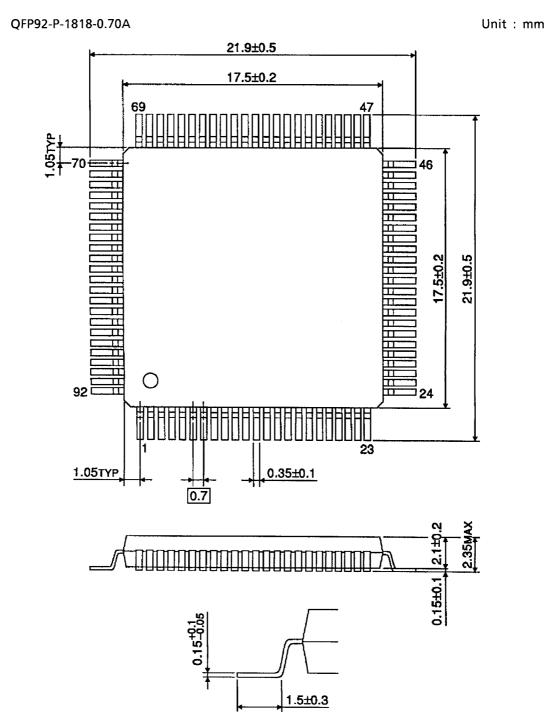
Test Conditions (Unless Otherwise Noted, $V_{SS} = 0 V$, $V_{DD} = 5 V \pm 10\%$, $V_{LC5} = 0 V$, Ta = -20 to 75°C)

Item	Symbol	Min	Max	Unit
Operating Frequency	fSCP	-	400	kHz
SCP Pulse Width	t _{CWH} , t _{CWL}	800		ns
SCP Rise / Fall Time	t _r , t _f		200	ns
LP Set-up Time	t _{LSU}	500		ns
LP Hold Time	t _{LHD}		10	ns
Data Set-up Time	t _{DSU}	300		ns
Data Hold Time	t _{DHD}	300	-	ns
Output Data Delay Time	t _{PD} (Note)	-	500	ns

Load Circuit



C_L = 50pF (including wiring capacitance)


Note: With load circuit connected

TOSHIBA

Application Circuit

Package Dimensions

Weight : 1.4g (Typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.