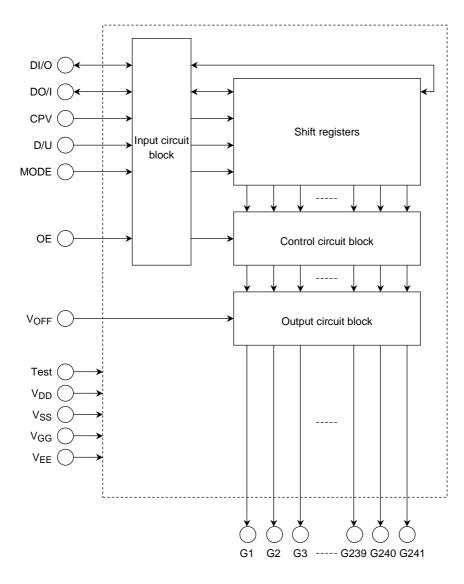
TOSHIBA CMOS Digital Integrated Circuits Silicon Monolithic

T6L70

Gate Driver for TFT LCD Panel

The T6L70 is a 241-channel output gate driver for TFT LCD panels. In addition to three output voltage levels available. This feature make this device ideal for the UXGA and SXGA + -compatible TFT LCD panel drive systems.


The T6L70 offers high integration circuit due to CMOS technology.

Features

- LCD drive output pins: Switchable between 241 and 211 pins
- Data transfer method : Bidirectional shift registers
- Built-in input signal level-shifting circuit

Block Diagram

			Unit: mm
ſ	T6L70E	User-ar	ea Pitch
	16L70E	IN	OUT
•		TCP specificati ct your local sale	

Pin Assignment

VEE VOFF VGG DI/O Test MODE VSS CPV VDD OE D/U DO/I VGG VOFF VEE	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	T6L70 (Chip top view)	256 255 254	G1 G2 G3
--	---	--------------------------	-------------------	----------------

* Pin assignment viewed from the bump side.

The above diagram does not specify the pad layout on the chip. It is an example of pin assignment on a TCP. For TCP specifications, contact your local sales office.

Pin Description

Pin Name	I/O		Function							
			lata input/output pins hift data. The pin fund	ction is switched betwee	n input and output by th	e D/U pin as				
			D/U	DI/O	DO/I]				
DI/O DO/I	I/O		L	Input	Output					
DO/I			Н	Output	Input					
		At input Data are la	tched into the shift re	gisters in sync with the r	ising edge of CPV.	-				
				ed, data to be input at th with the falling edge of C		from the pin.				
D/U	I		ata transfer direction switching pin Specifies the shift direction of the shift registers (Operation Description (1)).							
CPV	I		/ertical shift clock Shift clock for the shift registers. Data are shifted in sync with the rising edge of CPV.							
OE	I	When OE = When OE = data input of	utput enable pin When $OE = High$, outputs shift data and data input contents. When $OE = L$, controls the LCD panel drive output to V _{OFF} level, regardless of shift data and data input contents. Note that the contents of the shift registers are not cleared. Those operations are performed asynchronously to CPV.							
MODE	I	Determine pulled up to • MODE • MODE	 Dutput number switching pin Determines mode (241 or 211 output pin mode) for the LCD panel drive output pins. The pin is pulled up to V_{DD}. MODE = Low, 241 output pin mode. MODE = High, 211 output pin mode. (G107 to G136 output V_{OFF} level.) Use the pin at DC level. When High level = V_{DD}; when Low level = V_{SS}. 							
Test	I		Test pin. Leave the pin open. The pin is pulled down to V _{SS} in the T6L70.							
G1 to G241	0	LCD panel dr	ve pins.							
V _{OFF}		LCD off level	input pin.							
V _{GG}		Power supply	pin for controlling LC	D.						
V _{EE}		Power supply	pin for controlling LC	D.						
V _{DD}		Power supply	pin for internal logic.							
V _{SS}		Power supply	pin for internal logic.							

Operation Description

(1) Shift data transfer method

MODE Pin	D/U Pin	Shift Da	ata Input	Data Transfer Direction
MODE FIN	D/O PIII	Input	Output	
H (211 output pin mode)	L	DI/O	DO/I	$ \begin{array}{c} G1 \rightarrow G2 \rightarrow G3 \rightarrow \cdots \rightarrow G105 \rightarrow G106 \rightarrow G137 \\ \rightarrow G138 \rightarrow \cdots \rightarrow G239 \rightarrow G240 \rightarrow G241 \end{array} $
H (211 output pin mode)	Н	DO/I	DI/O	$ \begin{array}{c} G241 \rightarrow G240 \rightarrow G239 \rightarrow \cdots \rightarrow G138 \\ \rightarrow G137 \rightarrow G106 \rightarrow G105 \rightarrow \cdots \rightarrow G3 \rightarrow G2 \rightarrow G1 \end{array} $
L (241 output pin mode)	L	DI/O	DO/I	$G1 \rightarrow G2 \rightarrow G3 \rightarrow \cdots \rightarrow G239 \rightarrow G240 \rightarrow G241$
L (241 output pin mode)	Н	DO/I	DI/O	$G241 \rightarrow G240 \rightarrow G239 \rightarrow \cdots \rightarrow G3 \rightarrow G2 \rightarrow G1$

Shift data are latched in sync with the rising edge of shift clock CPV.

Shift data are output in sync with the falling edge of CPV corresponding to G241 data at D/U = Low level, and with the falling edge of CPV corresponding to G1 data at D/U = High.

(See the timing chart.)

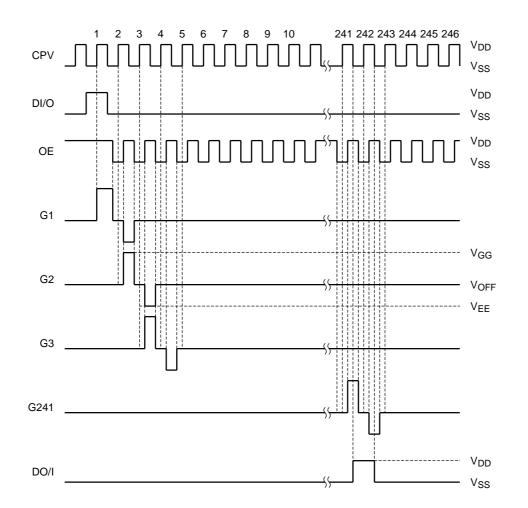
(2) LCD control pin

Output from the LCD panel drive output pins (Gn: n = 1 to 241) is controlled according to the shift data register data (An) and input pin D/U as follows:

• $10D$ parter unive output at $D/C = 10W$. On $(11 - 1.00241)$								
An	An + 1	An + 2	Output					
0	0	×	V _{OFF}					
0	1	×	V _{EE}					
1	0	×	V _{GG}					
1	1	0	V _{EE}					
1	1	1	V _{GG}					

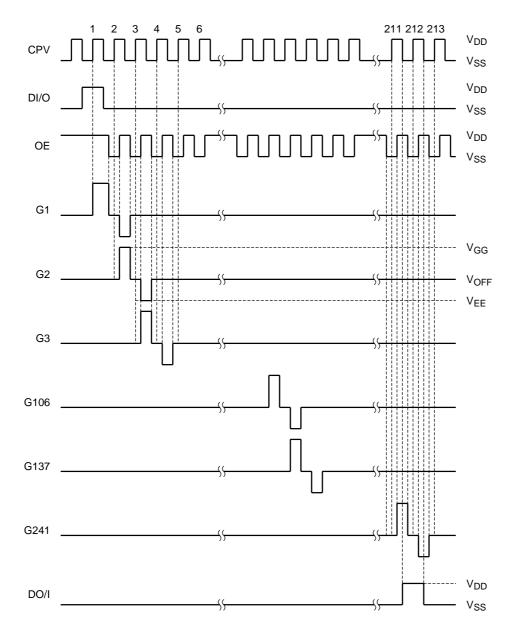
• LCD panel drive output at D/U = Low: Gn (n = 1 to 241)

x: Don't care

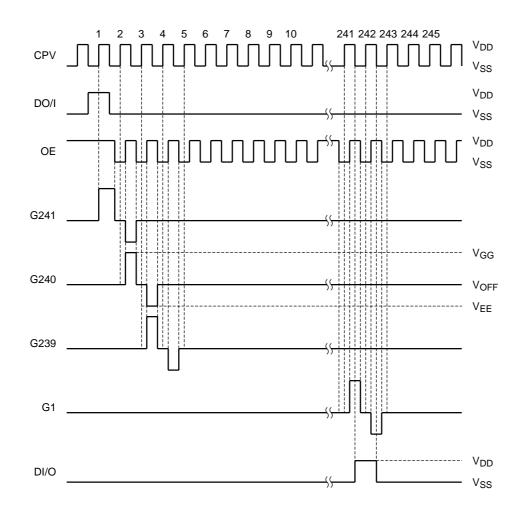

• LCD panel drive output at D/U = High: Gn (n = 1 to 241)

An	An – 1	An – 2	Output
0	0	×	V _{OFF}
0	1	×	V _{EE}
1	0	×	V _{GG}
1	1	0	V _{EE}
1	1	1	V _{GG}

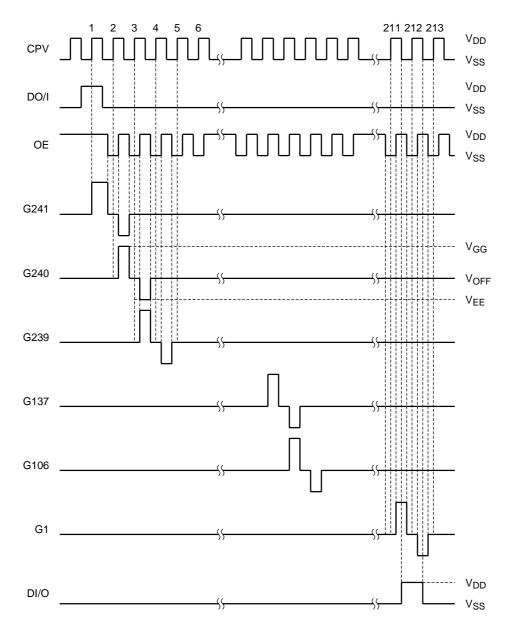
x: Don't care


Note that in 211 output pin mode (MODE = High), LCD panel drive output pins G107 to G136 output VOFF level regardless of the shift data.

Timing Chart 1


• 1CPV input drive (D/U = Low level, MODE = High level)

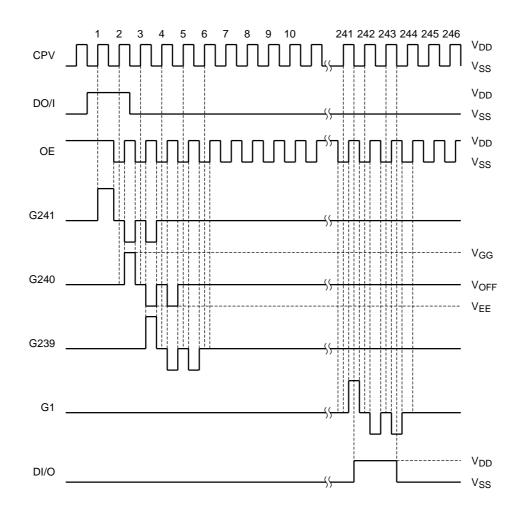
Timing Chart 2


• 1CPV input drive (D/U = Low level, MODE = High level)

Timing Chart 3

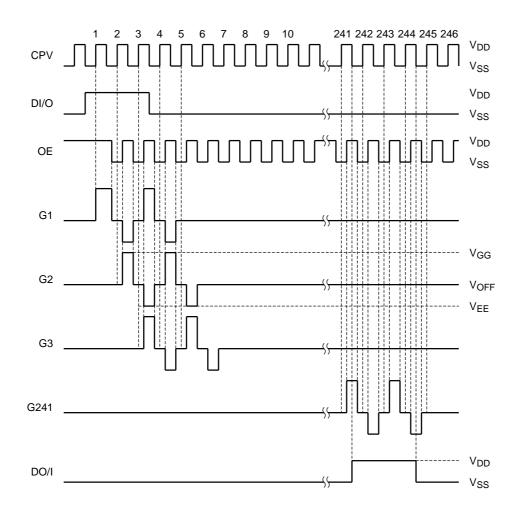
• 1CPV input drive (D/U = High level, MODE = Low level)

Timing Chart 4

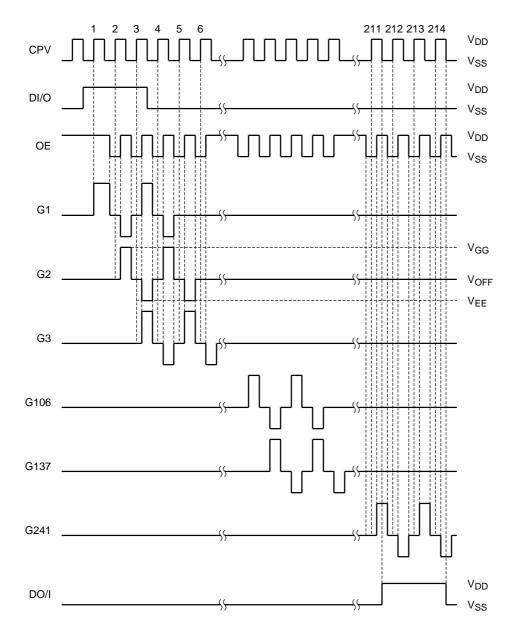

• 1CPV input drive (D/U = High level, MODE = High level)

Timing Chart 5

• 2CPV input drive (D/U = Low level, MODE = Low level)


Timing Chart 6

• 2CPV input drive (D/U = High level, MODE = Low level)


<u>TOSHIBA</u>

Timing Chart 7

• 3CPV input driver (D/U = Low level, MODE = Low level)

Timing Chart 8

• 3CPV input driver (D/U = Low level, MODE = High level)

Maximum Ratings (V_{SS} = 0 V)

Characteristics	Symbol	Rating	Unit	Relevant pin
Supply voltage (1)	$V_{GG} - V_{EE}$	-0.3 to 43.0	V	
Supply voltage (2)	V _{DD}	-0.3 to 6.0	V	
Supply voltage (3)	VEE	-20.0 to 0.3	V	
Input voltage	V _{IN}	V _{SS} – 0.3 to V _{DD} + 0.3	V	DI/O, DO/I, CPV, OE, MODE
LCD off level input voltage	V _{OFF}	V _{EE} - 0.3 to V _{GG} + 0.3	V	
Storage temperature	T _{stg}	-55 to 125	°C	

Operating Range (V_{SS} = 0 V)

Characteristics	Symbol	Rating	Unit
Supply voltage (1)	V _{GG}	15 to 30	V
	$V_{GG} - V_{EE}$	20 to 40	v
Supply voltage (2)	V _{DD}	2.7 to 3.6	V
Supply voltage (3)	V _{EE}	–15 to –5	V
Operating temperature	T _{opr}	-20 to 75	°C
Operating frequency	f _{CPV}	DC to 120	kHz
Output load capacitance	CL	1000 (max)	pF/PIN
LCD OFF level input voltage	V _{OFF}	$V_{\mbox{\scriptsize EE}}$ to $V_{\mbox{\scriptsize EE}}$ + 10	V

Electrical Characteristics

DC Characteristics (V_{SS} = 0 V, V_{DD} = 2.7 to 3.6 V, Ta = -20 to 75°C)

Charac	Characteristics		Test circuit	Test Condition	Min	Тур.	Max	Unit	Relevant Pin
Input voltage	Low level	VIL	_		V_{SS}		$0.3 \times V_{DD}$	V	(Note1)
input voltage	High level	V _{IH}	_		$0.7 \times V_{DD}$		V _{DD}	v	
Output	Low level V_{OL} — $I_{OL} = 40 \ \mu A$		$I_{OL} = 40 \ \mu A$	V_{SS}		V _{SS} + 0.3 V	V	DI/O,	
voltage	High level V_{OH} — $I_{OH} = -40 \ \mu A$		I _{OH} = -40 μA	V _{DD} – 0.3 V		V _{DD}	v	DO/I	
	V _{GG} level	R _{GG}		$V_{OUT} = V_{GG} - 0.5 V$ (Note 2)					
Output resistance	V _{OFF} level	R _{OFF}		$V_{OUT} = V_{OFF} + 0.5 V$ (Note 2)	—	—	1.0	kΩ	G1~G241
	V _{EE} level	R _{EE}		$V_{OUT} = V_{EE} + 0.5 V$ (Note 2)					
Pull-up resista	nce			_	_	400		kΩ	MODE
Input leakage current		I _{IN}		_	-1.0	_	1.0	μA	(Note1)
Current dissipation (1)		I _{GG}		(Note 3)			100	μA	V _{GG}
Current dissipa	ation (2)	I _{DD}		(Note 3)			500	μA	V _{DD}
Current dissipa	ation (3)	I _{SS}		(Note 3)		_	100	μA	V _{SS}

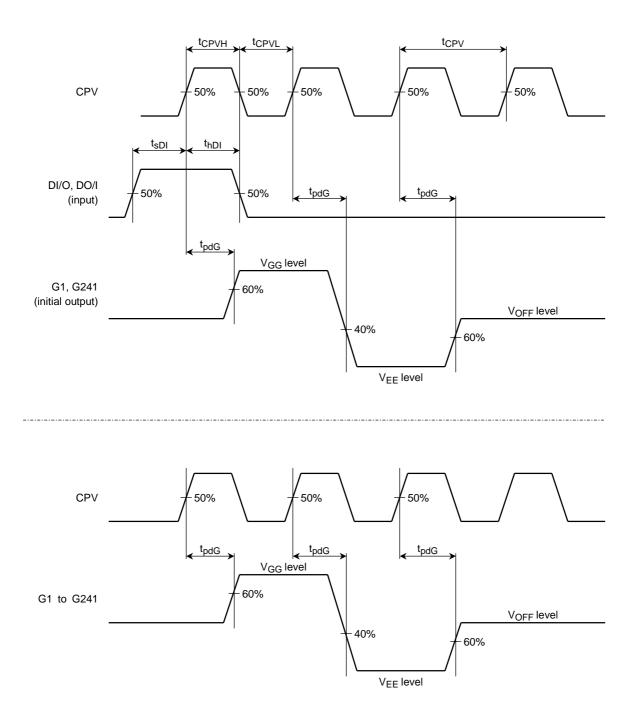
Note 1: DI/O, DO/I, CPV, OE, D/U, MODE

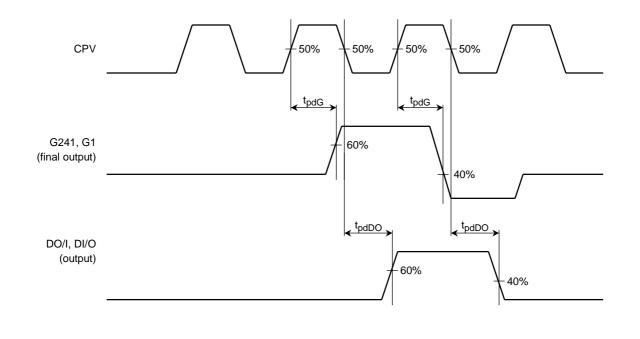
Note 2: $V_{GG} - V_{EE} = 35$ V or more

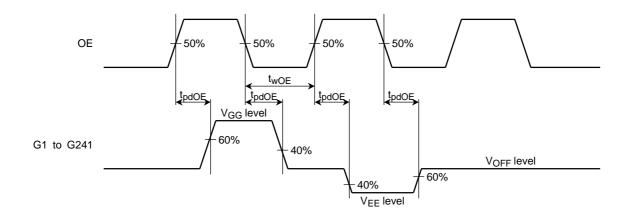
Note 3: f_CPV = 50 kHz, V_DD = 3.3 V, V_GG = 25 V, V_OFF = -5 V, V_EE = -10 V, no load

AC Characteristics ($V_{SS} = 0 V$, $V_{DD} = 2.7$ to 3.6 V, Ta = -20 to 75°C)

$t_r/t_f = 6 \text{ ns/6 ns}$

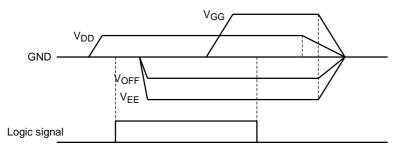

Characteristics	Symbol	Test circuit	Test Condition	Min	Max	Unit
Clock cycle	tCPV		—	8.0	_	μS
Clock pulse width (L)	t _{CPVL}		—	2.0	_	μS
Clock pulse width (H)	t _{CPVH}		—	2.0	_	μS
OE enable time	t _{wOE}		Output control by OE = "L"	1.0	_	μS
Data setup time	t _{sDI}		—	0.5	_	μS
Data hold time	t _{hDI}		—	0.5	_	μS
Output delay time (1)	t _{pdDO}		$C_L = 50 pF$	_	1.0	μS
Output delay time (2)	t _{pdG}		(Note 4)	_	1.0	μS
Output delay time (3)	t _{pdOE}		(Note 4)		1.0	μS


Note 4: Test condition: $V_{GG} - V_{EE} = 35 \text{ V}$, $V_{OFF} = V_{EE}$ to $V_{EE} + 10 \text{ V}$


(1) $C_L = 700 \text{ pF}$, $R = 7 \text{ k}\Omega$

(2)
$$C_L = 1000 \text{ pF}, R = 3 \text{ k}\Omega$$

<u>TOSHIBA</u>



Power Supply Sequence

At power on, supply power in order of $V_{DD} \rightarrow \text{logic signal} \rightarrow V_{EE}$, $V_{OFF} \rightarrow V_{GG}$. At power off, turn off in order of logic signal, $V_{DD} \rightarrow V_{EE}$, V_{OFF} , then V_{GG} .

At power off, $V_{GG} \ge V_{DD} \ge V_{OFF} \ge V_{EE}$.

*Logic signal includes High and Low levels (DC voltage) as well as signal rise and fall.

RESTRICTIONS ON PRODUCT USE

000707EBE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or
- bodily injuly (Unintended Usage). Unintended Usage include atomic energy control instruments, anplane of spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
 Polyimide base film is hard and thin. Be careful not to injure yourself on the film or to scratch any other parts with
- Polyimide base film is hard and thin. Be careful not to injure yourself on the film or to scratch any other parts with the film. Try to design and manufacture products so that there is no chance of users touching the film after assembly, or if they do, that there is no chance of them injuring themselves. When cutting out the film, try to ensure that the film shavings do not cause accidents. After use, treat the leftover film and reel spacers as industrial waste.
- Light striking a semiconductor device generates electromotive force due to photoelectric effects. In some cases this can cause the device to malfunction.
 This is especially true for devices in which the surface (back), or side of the chip is exposed. When designing circuits, make sure that devices are protected against incident light from external sources. Exposure to light both during regular operation and during inspection must be taken into account.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.