

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC1677C$

5 V-BIAS, +19.5 dBm OUTPUT, 1.8 GHz WIDE BAND SIMMIC AMPLIFIER

DESCRIPTION

The μ PC1677C is a silicon monolithic integrated circuit designed as medium output power amplifier for high frequency system applications. Due to +17 dBm TYP. output at 1 GHz, this IC is recommendable for transmitter stage amplifier of L Band wireless communication systems. This IC is packaged in 8-pin plastic DIP.

This IC is manufactured using NEC's 20 GHz f⊤ NESAT™IV silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability.

FEATURES

• Supply voltage : Vcc = 4.5 to 5.5 V

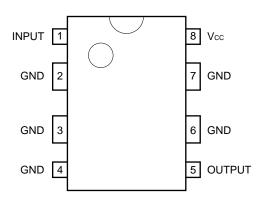
Saturated output power
 Po(sat) = +19.5 dBm TYP. @ f = 500 MHz
 Wideband response
 fu = 1.8 GHz TYP. @ 3dB bandwidth
 Power gain
 GP = 24 dB TYP. @ f = 500 MHz
 ISL = 34 dB TYP. @ f = 500 MHz

APPLICATION

· PA driver for high frequency system.

ORDERING INFORMATION

Part Number	Package	Marking	Supplying Form
μPC1677C	8-pin Plastic DIP (300 mil)	C1677C	Plastic Magazine Case


Remark To order evaluation samples, please contact your local NEC sales office. (Part number for sample order: μPC1677C)

Caution Electro-static sensitive devices.

The information in this document is subject to change without notice.

PIN CONNECTIONS

Pin No.	Pin Name	
1	INPUT	
2	GND	
3	GND	
4	GND	
5	OUTPUT	
6	GND	
7	GND	
8	Vcc	

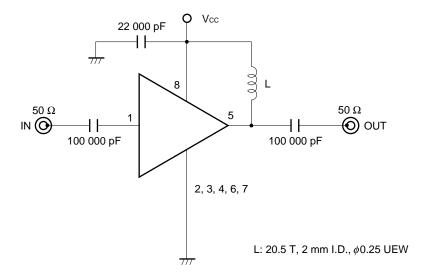
PIN EXPLANATION

Pin No.	Pin Name	Applied Voltage V	Function and Applications	Internal Equivalent Circuit
1	INPUT	-	Signal input pin. A internal matching circuit, configured with resisters, enables 50 Ω connection over a wide band. A multi-negative feedback circuit is designed to cancel the deviations of hFE and resistance. This pin must be coupled to signal source with capacitor for DC cut.	® Vcc ⑤ OUT
2 3 4 6 7	GND	0	Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as possible. All the ground pins must be connected together with wide ground pattern to decrease impedance difference.	
5	OUTPUT	Voltage as same as Vcc through external inductor	Signal output pin. The inductor must be attached between Vcc and output pins to supply current to the internal output transistors.	⑥+⑦ ②─③─④ GND GND 2, 3, 4, 6 and 7 are chorted by a lead frame.
8	Vcc	4.5 to 5.5	Power supply pin, which biases the internal input transistors. This pin should be externally equipped with bypass capacitor to minimize its impedance.	

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Rating	Unit
Supply Voltage	Vcc	T _A = +25 °C, pin 5 and 8	6	V
Power Dissipation	P _D	Mounted on double copper clad $50 \times 50 \times 1.6$ mm epoxy glass PWB (T _A = +85 °C)	750	mW
Operating Ambient Temperature	TA		-45 to +85	°C
Storage Temperature	T _{stg}		-55 to +150	°C
Input Power	Pin	T _A = +25 °C	+10	dBm

RECOMMENDED OPERATING RANGE


Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Remark
Supply Voltage	Vcc	4.5	5.0	5.5	>	The same voltage should be applied to pin 5 and 8.
Operating Ambient Temperature	TA	-45	+25	+85	°C	

ELECTRICAL CHARACTERISTICS (TA = +25 °C, Vcc = Vout = 5 V, Zs = $ZL = 50 \Omega$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	No signal	63	77	93	mA
Power Gain	GP	f = 500 MHz	22	24	26	dB
Noise Figure	NF	f = 500 MHz	-	6.0	8.0	dB
Upper Limit Operating Frequency	fu	3 dB down below flat gain at 0.1 GHz	1.5	1.8	-	GHz
Isolation	ISL	f = 500 MHz	29	34	-	dB
Input Return Loss	RLin	f = 500 MHz	10	13	-	dB
Output Return Loss	RLout	f = 500 MHz	1	4	-	dB
Maximum Output Level	Po(sat)	f = 500 MHz, Pin = +3 dBm	+17.5	+19.5	-	dBm

TEST CIRCUIT

Inductance for Vcc and output pin

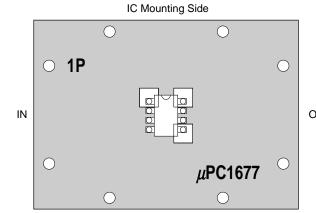
Due to 50 mA consuming internal output stage transistor, this IC outputs medium power. This 50 mA current should be supplied into output pin (pin No. 5) through inductance. So, please connect inductance (e.g. 300 nH) between Vcc (pin 8) and output pin (pin 5).

Inductance is intended to DC and AC effects. As for DC effect, this inductance make internal-output-transistor maximum biased to output maximum +19.5 dBm. As for AC effect, this inductance make output-port-impedance higher to get enough gain.

For above reason, large inductance value make operation wide band. 300 nH inductance is recommendable because of specified circuit.

Capacitors for Vcc, input and output pins

22 000 pF and 100 000 pF capacitors are recommendable as bypass capacitor for Vcc pin and coupling capacitors for input/output pins.


Bypass capacitor for Vcc pin is intended to minimize Vcc pin's ground impedance. Therefore, stable bias can be supplied against Vcc fluctuation.


Coupling capacitors for input/output pins are intended to minimize RF serial impedance and cut DC.

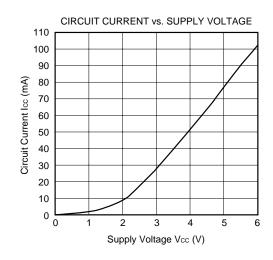
To get flat gain from 100 MHz up, 100 000 pF capacitors are assembled on the test circuit. [In the case of under 100 MHz operation, increase the value of coupling capacitor such as 1 μ F. Because the coupling capacitors are determined by the equation of C = 1/(2 π fZs).]

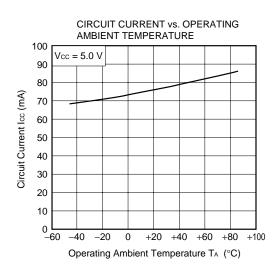
★ ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

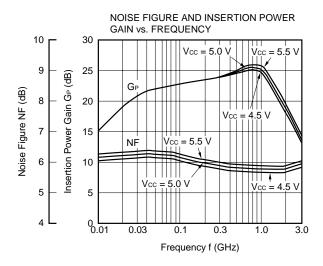
L: Manually wound coil

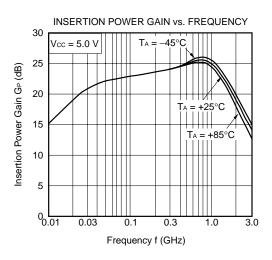
COMPONENT LIST

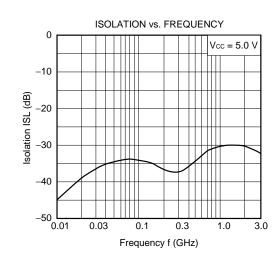
	Value
C ₁	22000 pF
C2, C3	100000 pF
L	300 nH

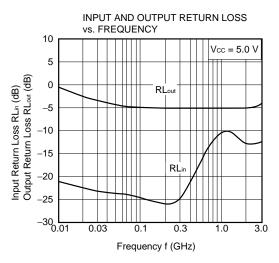

Notes

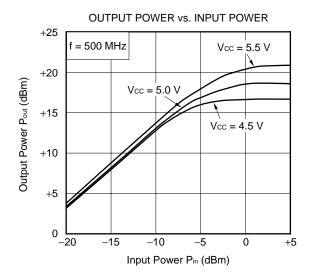

- 1. $70 \times 50 \times 1.6$ mm double sided copper clad polyimide board.
- 2. Solder plated on pattern
- 3. o 🔾 : Through holes

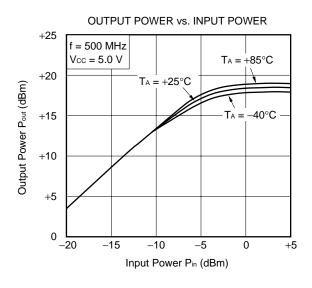

For more information on the use of this IC, refer to the following application note: USAGE AND APPLICATION OF SILICON MEDIUM-POWER HIGH-FREQUENCY AMPLIFIER MMIC (P12152E).

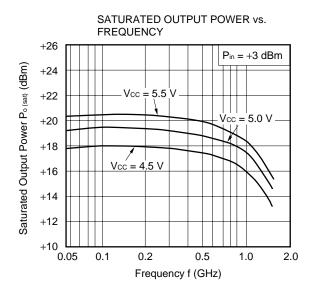


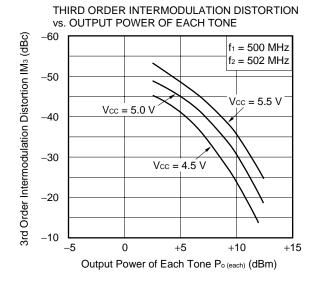

TYPICAL CHARACTERISTICS (TA = +25 °C unless otherwise specified)

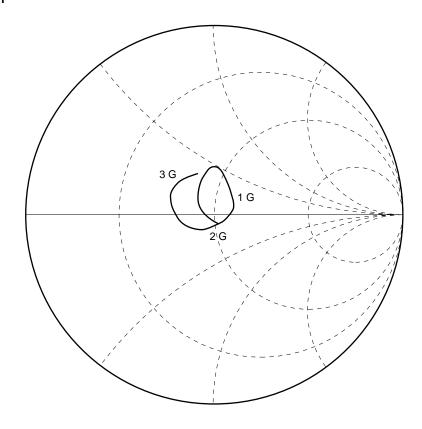


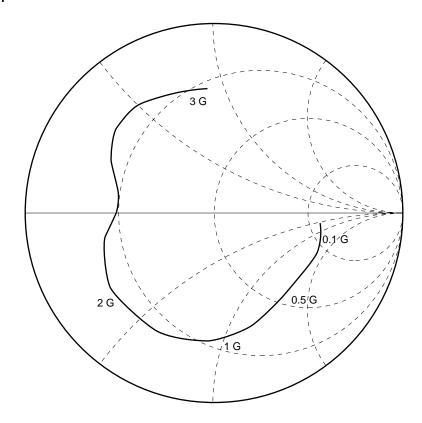












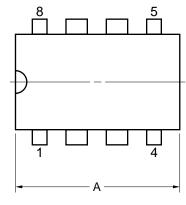
★ S-PARAMETER (Vcc = Vout = 5.0 V)

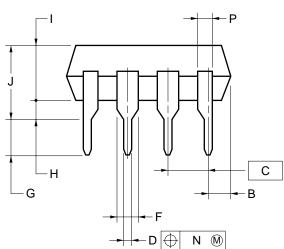
S₁₁-FREQUENCY

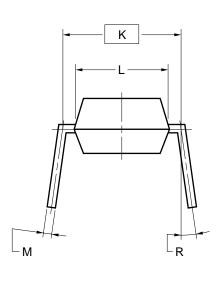
S₂₂-FREQUENCY

★ TYPICAL S-PARAMETER VALUES (T_A = +25 °C)

μPC1677C


Vcc = Vout = 5.0 V, Icc = 77 mA


FREQUENCY		S ₁₁	S	21	S	12	S	22	K
MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG	
100.0000	.050	-60.4	13.659	-4.3	.018	-2.5	.554	-3.0	1.51
200.0000	.103	103.3	15.031	-25.0	.017	10.7	.575	-20.1	1.46
300.0000	.252	86.3	15.761	-45.8	.021	26.7	.556	-42.0	1.07
400.0000	.220	78.1	14.739	-50.3	.021	26.1	.535	-49.3	1.20
500.0000	.124	69.7	13.742	-48.4	.020	32.1	.569	-48.0	1.30
600.0000	.123	59.1	13.141	-53.7	.020	31.6	.574	-55.3	1.32
700.0000	.116	54.9	13.565	-60.1	.023	38.4	.606	-66.3	1.08
800.0000	.134	45.0	13.392	-66.0	.025	37.4	.594	-72.7	1.04
900.0000	.109	22.8	13.216	-69.7	.027	40.3	.623	-78.8	0.98
1000.0000	.112	13.7	13.942	-77.0	.027	41.2	.657	-86.0	0.87
1100.0000	.092	-2.7	15.392	-83.6	.032	42.5	.681	-107.9	0.77
1200.0000	.060	-12.7	16.419	-90.3	.035	38.4	.687	-113.9	0.73
1300.0000	.055	-26.0	17.235	-102.9	.036	39.2	.683	-122.8	0.74
1400.0000	.036	-52.8	18.528	-115.1	.038	38.7	.690	-134.9	0.73
1500.0000	.014	-122.3	18.252	-127.5	.041	37.1	.671	-144.5	0.75
1600.0000	.012	153.3	18.308	-143.2	.043	34.6	.631	-156.5	0.78
1700.0000	.037	119.2	17.699	-154.9	.046	31.8	.598	-167.4	0.80
1800.0000	.032	53.1	16.162	-166.3	.046	24.8	.514	-170.0	0.85
1900.0000	.040	58.1	15.643	-177.3	.047	22.1	.497	-176.9	0.86
2000.0000	.034	51.2	14.709	171.5	.048	20.7	.484	178.0	0.88
2100.0000	.030	2.8	13.794	161.6	.048	14.5	.463	176.0	0.91
2200.0000	.037	-83.1	13.120	152.3	.045	8.0	.510	174.1	0.91
2300.0000	.078	-117.6	12.483	139.9	.043	-1.0	.553	168.7	0.91
2400.0000	.127	-146.2	11.808	129.4	.037	-6.9	.605	161.6	0.95
2500.0000	.188	-176.6	10.880	115.8	.029	-10.6	.680	149.0	1.07
2600.0000	.255	154.8	9.246	101.0	.018	2.6	.718	134.0	1.64
2700.0000	.272	130.3	7.497	90.5	.020	35.8	.683	119.5	1.82
2800.0000	.237	115.9	6.031	86.4	.028	31.2	.610	111.3	1.88
2900.0000	.226	110.7	5.138	79.3	.028	29.9	.608	105.2	2.16
3000.0000	.235	108.2	4.424	76.5	.028	27.8	.613	100.4	2.45
3100.0000	.268	114.4	3.812	69.4	.022	18.6	.671	96.9	3.16



PACKAGE DIMENSIONS

8 PIN PLASTIC DIP (300 mil)

NOTES

- 1) Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
Α	10.16 MAX.	0.400 MAX.
В	1.27 MAX.	0.050 MAX.
С	2.54 (T.P.)	0.100 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	1.4 MIN.	0.055 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	7.62 (T.P.)	0.300 (T.P.)
L	6.4	0.252
М	$0.25^{+0.10}_{-0.05}$	0.010+0.004
N	0.25	0.01
Р	0.9 MIN.	0.035 MIN.
R	0~15°	0~15°

P8C-100-300B,C-1

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be connected together with wide ground pattern to decrease impedance difference.
- (3) The bypass capacitor should be attached to Vcc line.
- (4) The inductor must be attached between Vcc and output pins. The inductance value should be determined in accordance with desired frequency.
- (5) The DC cut capacitor must be attached to input pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

μPC1677C

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Wave Soldering	Soldering bath temperature: 260°C or below Time: 10 seconds or less	WS60-00-1
	Count: 1, Exposure limit ^{Note} : None	

Note After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).

NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed

for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5