

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC4574$

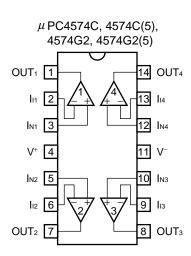
QUAD ULTRA LOW-NOISE, WIDEBAND, OPERATIONAL AMPLIFIER

DESCRIPTION

The μ PC4574 is an ultra low noise, high slew rate quad operational amplifier specifically designed for audio, instrumentation, and communication circuits. The low noise and high frequency capabilities make it ideal for preamps and active filters for instrumentation and professional audio.

FEATURES

- Ultra low noise
- · High slew rate
- · Wide bandwidth
- Internal frequency compensation


★ ORDERING INFORMATION

Part Number	Package
μPC4574C	14-pin plastic DIP (7.62 mm (300))
μPC4574C(5)	14-pin plastic DIP (7.62 mm (300))
μPC4574G2	14-pin plastic SOP (5.72 mm (225))
μPC4574G2(5)	14-pin plastic SOP (5.72 mm (225))

EQUIVALENT CIRCUIT (1/4 Circuit)

Q₇ Q₁₄ Q₁₁ Q₁ **Q**₁₃ **Q**16 **Q**₁₀ R∮ Q15 Q_6 -OUT Q₁₂ Q_{10} 🛣 D **R**10 R_4

PIN CONFIGURATION (Top View)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

Para	ameter	Symbol	Ratings	Unit
Voltage between V ⁺ a	nd V ^{- Note1}	$V^+ - V^-$	-0.3 to +36	V
Differential Input Volta	ge	VID	±30	V
Input Voltage Note2		Vı	V ⁻ -0.3 to V ⁺ +0.3	V
Output Voltage Note3		Vo	V^- -0.3 to V^+ +0.3	V
Power Dissipation	C Package Note4	Рт	570	mW
	G2 Package Note5		550	mW
Output Short Circuit D	uration Note6		10	sec
Operating Ambient Te	mperature	TA	-20 to +80	°C
Storage Temperature		T _{stg}	-55 to +125	°C

- **Notes 1.** Reverse connection of supply voltage can cause destruction.
 - 2. The input voltage should be allowed to input without damage or destruction. Even during the transition period of supply voltage, power on/off etc., this specification should be kept. The normal operation will establish when the both inputs are within the Common Mode Input Voltage Range of electrical characteristics.
 - 3. This specification is the voltage which should be allowed to supply to the output terminal from external without damage or destructive. Even during the transition period of supply voltage, power on/off etc., this specification should be kept. The output voltage of normal operation will be the Output Voltage Swing of electrical characteristics.
 - 4. Thermal derating factor is -7.6 mW/°C when ambient temperature is higher than 50°C.
 - 5. Thermal derating factor is -5.5 mW/°C when ambient temperature is higher than 25°C.
 - **6.** Pay careful attention to the total power dissipation not to exceed the absolute maximum ratings, Note 4 and Note 5.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	V [±]	±4		±16	V
Output Current	lo			±10	mA
Source Resistance	Rs			50	kΩ
Capacitive Load (Av = +1)	CL			100	pF

2

μ PC4574C, μ PC4574G2

ELECTRICAL CHARACTERISTICS (T_A = 25°C, V^{\pm} = ±15 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input Offset Voltage	Vio	$R_S \le 50 \Omega$		±0.3	±5	mV
Input Offset Current Note	lio			±10	±200	nA
Input Bias Current Note	Ів			500	1000	nA
Large Signal Voltage Gain	Av	$R_L \ge 2 \text{ k}\Omega$, $V_0 = \pm 10 \text{ V}$	30000	300000		
Supply Current	Icc	lo = 0 A, All Amplifiers		8.5	12	mA
Common Mode Rejection Ratio	CMR		80	100		dB
Supply Voltage Rejection Ratio	SVR		80	100		dB
Output Voltage Swing	Vom	$R_L \ge 10 \text{ k}\Omega$	±12	±13.4		V
		$R_L \ge 2 \text{ k}\Omega$	±10	+12.8		
				-12.4		
Common Mode Input Voltage Range	Vісм		±12	±14		V
Slew Rate	SR	$R_L \ge 2 \text{ k}\Omega$	4	6		V/ μs
Gain Band Width Product	GBW	fo = 100 kHz	10	14		MHz
Unity Gain Frequency	funity	open loop		7		MHz
Phase Margin	фunity	open loop		50		degree
Total Harmonic Distortion	THD	Vo = 3 V _{r.m.s.} , f = 20 Hz to 20 kHz (Fig.1)		0.002		%
Input Equivalent Noise Voltage	Vn	RIAA (Fig.2)		1.2		μ Vr.m.s.
		FLAT+JIS A, Rs = 100Ω (Fig.3)		0.53	0.65	
Input Equivalent Noise Voltage Density	e n	fo = 10 Hz, Rs = 100 Ω		5.5		nV/√Hz
		fo = 1 kHz, Rs = 100 Ω		5.0		
Input Equivalent Noise Current Density	İn	fo = 1 kHz		0.7		pA/√Hz
Channel Separation		f = 20 Hz to 20 kHz		120		dB

Note Input bias currents flow out from IC. Because each currents are base current of PNP-transistor on input stage.

Data Sheet G15977EJ3V0DS

3

\star μ PC4574C(5), μ PC4574G2(5)

ELECTRICAL CHARACTERISTICS (TA = 25°C, V^{\pm} = ±15V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input Offset Voltage	Vio	Rs ≤ 50 Ω		±0.3	±1	mV
Input Offset Current Note	lio			±10	±60	nA
Input Bias Current Note	Ів			500	650	nA
Large Signal Voltage Gain	Av	$R_L \ge 2 \text{ k}\Omega$, $V_0 = \pm 10 \text{ V}$	50000	300000		
Supply Current	Icc	Io = 0 A, All Amplifiers		8.5	11	mA
Common Mode Rejection Ratio	CMR		85	100		dB
Supply Voltage Rejection Ratio	SVR		85	100		dB
Output Voltage Swing	Vom	$R_L \ge 10 \text{ k}\Omega$	±13	±13.4		V
		$R_L \ge 2 \ k\Omega$	±11.5	+12.8		
				-12.4		
Common Mode Input Voltage Range	Vісм		±13	±14		V
Slew Rate	SR	$R_L \ge 2 \text{ k}\Omega$	4	6		V/ μs
Gain Band Width Product	GBW	fo = 100 kHz	10	14		MHz
Unity Gain Frequency	funity	open loop		7		MHz
Phase Margin	фunity	open loop		50		degree
Total Harmonic Distortion	THD	Vo = 3 V _{r.m.s.} , f = 20 Hz to 20 kHz (Fig.1)		0.002		%
Input Equivalent Noise Voltage	Vn	RIAA (Fig.2)		1.2		μ Vr.m.s.
		FLAT+JIS A, Rs = 100 Ω (Fig.3)		0.53	0.65	
Input Equivalent Noise Voltage Density	e n	fo = 10 Hz, Rs = 100 Ω		5.5		nV/√Hz
		fo = 1 kHz, Rs = 100 Ω		5.0		
Input Equivalent Noise Current Density	İn	fo = 1 kHz		0.7		pA/√Hz
Channel Separation		f = 20 Hz to 20 kHz		120		dB

Note Input bias currents flow out from IC. Because each currents are base current of PNP-transistor on input stage.

4

MEASUREMENT CIRCUIT

Fig.1 Total Harmonic Distortion Measurement Circuit

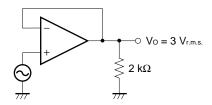
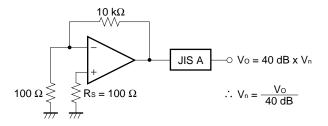
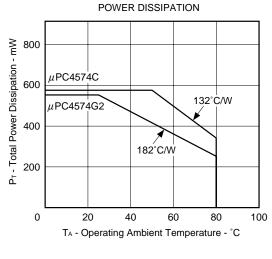
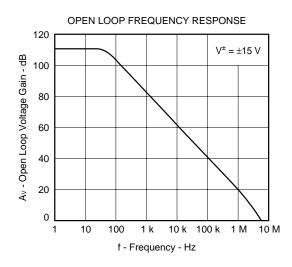
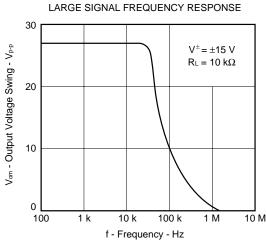
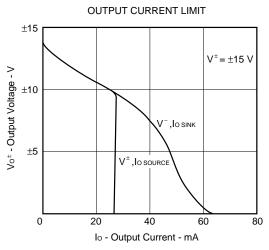



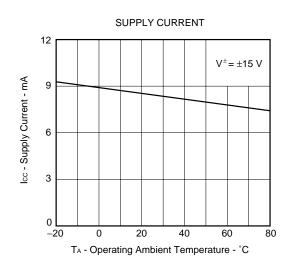
Fig.2 Noise Measurement Circuit (RIAA)

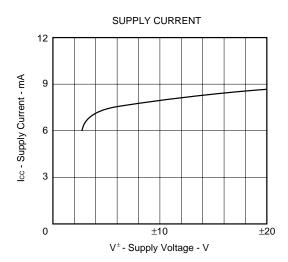

Fig.3 Flat Noise Measurement Circuit (FLAT+JIS A)

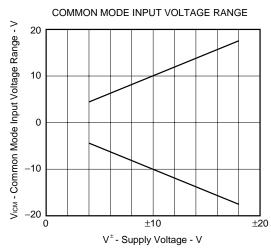


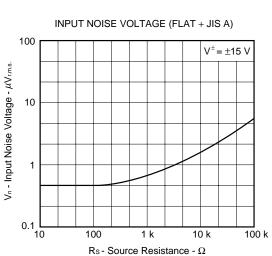

Data Sheet G15977EJ3V0DS 5

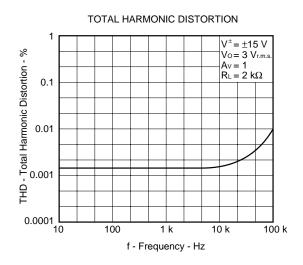


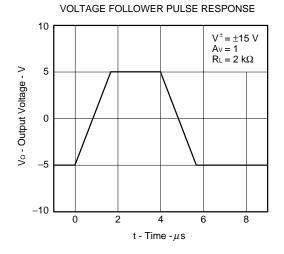

TYPICAL PERFORMANCE CHARACTERISTICS (TA = 25°C, TYP.)

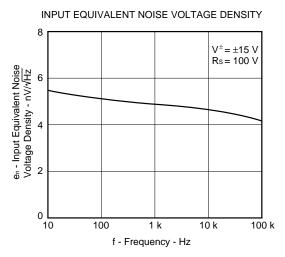


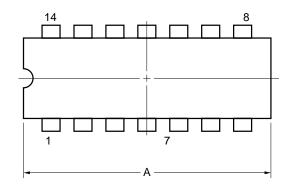


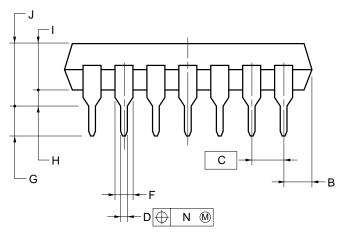


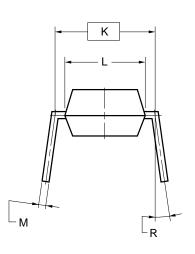






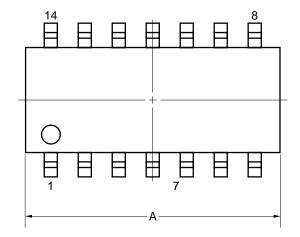




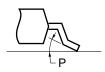


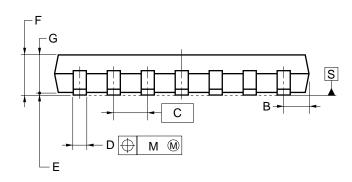
★ PACKAGE DRAWINGS (Unit: mm)

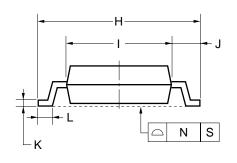
14-PIN PLASTIC DIP (7.62 mm (300))


NOTES

- Each lead centerline is located within 0.25 mm of its true position (T.P.) at maximum material condition.
- 2. Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS
Α	19.22±0.2
В	2.14 MAX.
С	2.54 (T.P.)
D	0.50±0.10
F	1.32±0.12
G	3.6±0.3
Н	0.51 MIN.
I	3.55
J	4.3±0.2
K	7.62 (T.P.)
L	6.4±0.2
М	$0.25^{+0.10}_{-0.05}$
N	0.25
R	0~15°


P14C-100-300B1-3


14-PIN PLASTIC SOP (5.72 mm (225))

detail of lead end

NOTE

Each lead centerline is located within 0.1 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	10.2±0.26
В	1.42 MAX.
С	1.27 (T.P.)
D	$0.42^{+0.08}_{-0.07}$
Е	0.1±0.1
F	$1.59^{+0.21}_{-0.2}$
G	1.49
Н	6.5±0.2
I	4.4±0.1
J	1.1±0.16
K	$0.17_{-0.07}^{+0.08}$
L	0.6±0.2
М	0.1
N	0.10
Р	3°+7°

S14GM-50-225B, C-6

★ RECOMMENDED SOLDERING CONDITIONS

When soldering this product, it is highly recommended to observe the conditions as shown below. If other soldering processes are used, or if the soldering is performed under different conditions, please make sure to consult with our sales offices.

For more details, refer to below our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

Type of Surface Mount Device

μPC4574G2, 4574G2(5): 14-pin plastic SOP (5.72 mm (225))

Process	Conditions	Symbol
Infrared Ray Reflow	Peak temperature: 230°C or below (Package surface temperature), Reflow time: 30 seconds or less (at 210°C or higher), Maximum number of reflow processes: 1 time.	IR30-00-1
Vapor Phase Soldering	Peak temperature: 215°C or below (Package surface temperature), Reflow time: 40 seconds or less (at 200°C or higher), Maximum number of reflow processes: 1 time.	VP15-00-1
Wave Soldering	Solder temperature: 260°C or below, Flow time: 10 seconds or less, Maximum number of flow processes: 1 time, Pre-heating temperature: 120°C or below (Package surface temperature).	WS60-00-1
Partial Heating Method	Pin temperature: 300°C or below, Heat time: 3 seconds or less (Per each side of the device).	_

Caution Apply only one kind of soldering condition to a device, except for "partial heating method", or the device will be damaged by heat stress.

Type of Through-hole Device

μPC4574C, 4574C(5): 14-pin plastic DIP (7.62 mm (300))

Process	Conditions
Wave Soldering	Solder temperature: 260°C or below,
(only to leads) Partial Heating Method	Flow time: 10 seconds or less. Pin temperature: 300°C or below,
Tand Housing Mounda	Heat time: 3 seconds or less (per each lead).

Caution For through-hole device, the wave soldering process must be applied only to leads, and make sure that the package body does not get jet soldered.

[MEMO]

- The information in this document is current as of February, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
 developed based on a customer-designated "quality assurance program" for a specific application. The
 recommended applications of a semiconductor product depend on its quality grade, as indicated below.
 Customers must check the quality grade of each semiconductor product before using it in a particular
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).